J. For. Sci., 2023, 69(10):415-426 | DOI: 10.17221/93/2022-JFS

Estimation of Fagus orientalis Lipsky height using nonlinear models in Hyrcanian forests, IranOriginal Paper

Mohammad Rasoul Nazari Sendi1, Iraj Hassanzad Navroodi1, Aman Mohammad Kalteh2
1 Department of Forestry, Faculty of Natural Resources, University of Guilan, Sowmehe Sara, Iran
2 Department of Range and Watershed Management, Faculty of Natural Resources, University of Guilan, Sowmehe Sara, Iran

Tree height is one of the most important variables in describing forest stand structure. However, due to difficulty in height measurement, especially in dense and mountainous forests, the common approach is to invoke the height-diameter (H-D) models. The oriental beech (Fagus orientalis Lipsky) is one of the most important species of Hyrcanian forests, over the mid to high-altitudes (400–1 800 m a.s.l.), in northern Iran. In this study, the H-D relationship of beech trees was investigated separately for mid-altitude and high-altitude in Shafaroud forests of Guilan using 14 nonlinear H-D models and an artificial neural network model (ANN). To collect data, a systematic random sampling method within a 100 × 100 m regular randomized grid was applied. In total, 3 243 individual trees in 255 circular plots with 0.1 ha were measured. For comparing the results, performance criteria including root mean square error (RMSE), R2adj, Akaike's information criterion (AIC), and mean absolute error (MAE) were used. In high and mid altitudes, Meyer (1940) and Bates and Watts (1980) models had the best performance, while Watts (1983) model and Burkhart-Strub (1974) model had the worst performance in high-altitude and in mid-altitude, respectively. On the other hand, the ANN model had the best accuracy and performance in both sites. Since the performance of the ANN model is superior and consistent compared to the common nonlinear models, here it is preferred for both regions.

Keywords: elevation; height-diameter modelling; neural network; oriental beech; Shafaroud

Received: July 18, 2022; Accepted: July 17, 2023; Prepublished online: October 12, 2023; Published: October 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nazari Sendi MR, Navroodi IH, Kalteh AM. Estimation of Fagus orientalis Lipsky height using nonlinear models in Hyrcanian forests, Iran. J. For. Sci. 2023;69(10):415-426. doi: 10.17221/93/2022-JFS.
Download citation

Supplementary files:

Download file93-2022-JFS_ESM.pdf

File size: 84.55 kB

References

  1. Ahmadi K., Alavi J., Tabari M., Aertsen W. (2014): Comparison of non-linear height and diameter functions for oriental beech (Fagus orientalis Lipsky.) in a mixed and uneven-aged Caspian forest. Iranian Journal of Forest, 6: 11-22.
  2. Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, 42: 1-16. Go to original source...
  3. Baumgartner R.J. (2019): Sustainable development goals and the forest sector - A complex relationship. Forests, 10: 152. Go to original source...
  4. Burkhart H.E., Strub M.R. (1974): A model for simulation of planted loblolly pine stands. In: Growth Models for Tree and Stand Simulation. Stockholm, Royal College of Forestry: 128-135.
  5. Burnham K.P., Anderson D.R. (2004): Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research, 33: 261-304. Go to original source...
  6. Castaño-Santamaría J., Crecente-Campo F., Fernández-Martínez J.L., Barrio-Anta M., Obeso J.R. (2013): Tree height prediction approaches for uneven-aged beech forests in northwestern Spain. Forest Ecology and Management, 307: 63-73. Go to original source...
  7. Curtis R.O., Clendenen G.W., DeMars D.J. (1981): A New Stand Simulator for Coast Douglas-fir: DFSIM User's Guide. Portland, USDA, Forest Service: 83.
  8. Diamantopoulou M.J., Özçelik R., Crecente-Campo F., Eler Ü. (2015): Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosystems Engineering, 133: 33-45. Go to original source...
  9. Hagan M.T., Demuth H.B., Beale M.H., De-Jesús O. (2014): Neural Network Design. 2nd Ed. Oklahoma, Martin Hagan: 1012.
  10. Hassanzad Navroodi I., Alavi S.J., Ahmadi K., Radkarimi M. (2016): Comparison of different non-linear models for prediction of the relationship between diameter and height of velvet maple trees in natural forests (Case study: Asalem Forests, Iran). Journal of Forest Science, 62: 65-71. Go to original source...
  11. Jordan M.I., Mitchell T.M. (2015): Machine learning: Trends, perspectives, and prospects. Science, 349: 255-260. Go to original source... Go to PubMed...
  12. Kalteh A.M. (2017): Enhanced monthly precipitation forecasting using artificial neural network and singular spectrum analysis conjunction models. INAE Letters, 2: 73-81. Go to original source...
  13. Králíèek I., Vacek Z., Vacek S., Reme¹ J., Bulu¹ek D., Král J., ©tefanèík I., Putalová T. (2017): Dynamics and structure of mountain autochthonous spruce-beech forests: Impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77: 119-137. Go to original source...
  14. Larson B.C. (1986): Development and growth of even-aged stands of Douglas-fir and grand fir. Canadian Journal of Forest Research, 16: 367-372. Go to original source...
  15. Loetsch F., Zöhrer F., Haller K.E. (1973): Forest Inventory. Munich, BLV Verlagsgesellschaft: 469.
  16. Maier H.R., Dandy G.C. (2000): Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software, 15: 101-124. Go to original source...
  17. Mehtätalo L., De-Miguel S., Gregoire T.G. (2015): Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45: 826-837. Go to original source...
  18. Meyer H.A. (1940): A mathematical expression for height curves. Journal of Forestry, 38: 415-420.
  19. Mohammadi J., Shataee S. (2017): Study of different height-diameter models for hornbeam (Carpinus betulus L.) in uneven-aged stands of Shastkalateh forest of Gorgan. Iranian Journal of Forest and Poplar Research, 24: 700-712.
  20. Mugasha W.A., Mauya E.W., Njana A.M., Karlsson K., Malimbwi R.E., Ernest S. (2019): Height-diameter allometry for tree species in Tanzania mainland. International Journal of Forestry Research, 2019: 1-17. Go to original source...
  21. Nazari Sendi M.R., Hassanzad Navroodi I., Poorbabaei H., Poorbabaei H., Sheikhkanlu Milan M., Bakhshandeh Navrood B. (2014): Determination of lime tree (Tilia begonifolia Stev.) stems form based on quantitative parameters (Study area: Shafaroud forests of Guilan province, Iran). Folia Forestalia Polonica, 56: 165-170. Go to original source...
  22. Nazari Sendi M.R., Hassanzad Navroodi I., Kalteh A.M., Poorbabaei H. (2020): Estimation of lime (Tilia begonifolia Stev.) trees height using nonlinear models. Iranian Journal of Forest and Poplar Research, 27: 436-450.
  23. Ng'andwe P., Chungu D., Yambayamba A.M., Chilambwe A. (2019): Modelling the height-diameter relationship of planted Pinus kesiya in Zambia. Forest Ecology and Management, 477: 1-11. Go to original source...
  24. Ogana F.N., Ercanli I. (2021): Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. Journal of Forestry Research, 33: 883-898. Go to original source...
  25. Pham H. (2019): A new criterion for model selection. Mathematics, 7: 1215. Go to original source...
  26. Prodan M. (1968): Forest Biometrics. Oxford, Pergamon Press: 447.
  27. Rasaneh Y., Moshtagh-Kahnamoie M.H., Salehi P. (2001): Quantitative and qualitative investigation on forests of northern Iran. In: Proceedings of the National Meeting on Management of Northern Forests in Iran, Ramsar, Sept 6-7, 2001: 55-79.
  28. Ratkowsky D.A. (1990): Handbook of Nonlinear Regression. New York, Marcel Dekker: 120.
  29. Richards F.J. (1959): A flexible growth functions for empirical use. Journal of Experimental Botany, 10: 290-300. Go to original source...
  30. Sanquetta C.R., Dalla Corte A.P., Behling A., de Oliveira Piva L.R., Péllico Netto S., Rodrigues A.L., Sanquetta M.N.I. (2018): Selection criteria for linear regression models to estimate individual tree biomasses in the Atlantic Rain Forest, Brazil. Carbon Balance and Management, 13: 1-15. Go to original source... Go to PubMed...
  31. Scaranello M.A.D.S., Alves L.F., Vieira S.A., Camargo P.B.D., Joly C.A, Martinelli L.A. (2012): Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Scientia Agricola, 69: 26-37. Go to original source...
  32. Schreuder H.T., Hafley W.L., Bennett F.A. (1979): Yield prediction for unthinned natural slash pine stands. Forest Science, 25: 25-30.
  33. Sharma R.P., Breidenbach J. (2015): Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. Forest Science and Technology, 11: 44-53. Go to original source...
  34. Sharma R.P., Vacek Z., Vacek S. (2016a): Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. Journal of Forest Science, 62: 470-484. Go to original source...
  35. Sharma R.P., Vacek Z., Vacek S. (2016b): Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees, 30: 1969-1982. Go to original source...
  36. Sharma R.P., Vacek Z., Vacek S., Kuèera M. (2018): Modelling individual tree height-diameter relationships for multi-layered and multi-species forests in central Europe. Trees, 33: 103-119. Go to original source...
  37. Sharma R.P., Vacek Z., Vacek S., Kuèera M. (2019): A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech national forest inventory data. Forests, 10: 70. Go to original source...
  38. Shen J., Hu Z., Sharma R.P., Wang G., Meng X., Wang M., Wang Q., Fu L. (2020): Modeling height-diameter relationship for Poplar plantations using combined-optimization multiple hidden layer back propagation neural network. Forests, 11: 442. Go to original source...
  39. Sibbesen E. (1981): Some new equations to describe phosphate sorption by soils. European Journal of Soil Science, 32: 67-74. Go to original source...
  40. ©tefanèík I., Vacek Z., Sharma R.P., Vacek S., Rösslová M. (2018): Effect of thinning regimes on growth and development of crop trees in Fagus sylvatica stands of Central Europe over fifty years. Dendrobiology, 79: 141-155. Go to original source...
  41. Temesgen H.V., Gadow K. (2004): Generalized height-diameter models: An application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123: 45-51. Go to original source...
  42. Thanh N.T., Dinh T.T., Shen H.L. (2019): Height-diameter relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China using nonlinear regressions and artificial neural network models. Journal of Forest Science, 65: 134-143. Go to original source...
  43. Tomé M.M.B.T. (1988): Modelação do crescimento de árvore individual em povoamentos de Eucalyptus globulus Labill. (1ª rotação) Região centro de Portugal. [Ph.D. Thesis.] Lisbon, Universidade Tecnica de Lisboa. (in Portuguese)
  44. Watts S.B. (1983): Forestry Handbook for British Columbia. 4th Ed. Vancouver, University of British Columbia: 773.
  45. Willmott C.J., Matsuura K. (2005): Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30: 79-82. Go to original source...
  46. Yang R.C., Kozak A., Smith J.H.G. (1978): The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research, 8: 424-431. Go to original source...
  47. Zeide B. (1993): Analysis of growth equations. Forest Science, 39: 594-616. Go to original source...
  48. Zhang L., Peng C., Huang S., Zhou X. (2002): Development and evaluation of ecoregion-based Jack pine height-diameter models for Ontario. The Forestry Chronicle, 78: 530-538. Go to original source...
  49. Zhang B., Sajjad S., Chen K., Zhou L., Zhang Y., Yong K.K., Sun Y. (2020): Predicting tree height-diameter relationship from relative competition levels using quantile regression models for Chinese fir (Cunninghamia lanceolata) in Fujian province, China. Forests, 11: 183. Go to original source...
  50. Zobeiry M. (2005): Forest Inventory, Measurement of Tree and Stand. Tehran, University of Tehran Press: 401.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.