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Abstract: Tree height is one of the most important variables in describing forest stand structure. However, due to dif-
ficulty in height measurement, especially in dense and mountainous forests, the common approach is  to  invoke the 
height-diameter (H-D) models. The oriental beech (Fagus orientalis Lipsky) is one of the most important species of Hy-
rcanian forests, over the mid to high-altitudes (400–1 800 m a.s.l.), in northern Iran. In this study, the H-D relation-
ship of beech trees was investigated separately for mid-altitude and high-altitude in Shafaroud forests of Guilan using 
14 nonlinear H-D models and an artificial neural network model (ANN). To collect data, a systematic random sam-
pling method within a 100 × 100 m regular randomized grid was applied. In total, 3 243 individual trees in 255 cir-
cular plots with 0.1 ha were measured. For comparing the results, performance criteria including root mean square 
error (RMSE), 2

adjR , Akaike's information criterion (AIC), and mean absolute error (MAE) were used. In high and mid 
altitudes, Meyer (1940) and Bates and Watts (1980) models had the best performance, while Watts (1983) model and 
Burkhart-Strub (1974) model had the worst performance in high-altitude and in mid-altitude, respectively. On the other 
hand, the ANN model had the best accuracy and performance in both sites. Since the performance of the ANN model 
is superior and consistent compared to the common nonlinear models, here it is preferred for both regions.
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Forest management based on  sustainable devel-
opment principles requires accurate and practi-
cal data (Baumgartner  2019). The  most significant 
quantitative data that provide suitable insight into 
the conditions of forest stands and have been used 
for sustainable forest management goals are diam-
eter at breast height (DBH), height, and the relation-
ship between them (Sharma, Breidenbach  2015). 

These two variables have shown the evolution and 
reaction of  forest stands through time in response 
to the execution of previous management (Sharma 
et al. 2016a, 2019). As well as this, variables are used 
as  inputs to  tree growth, volume and site produc-
tivity (Zhang et al. 2020). Tree measuring in dense 
forest stands, mountainous areas, and highlands 
is  complicated (Diamantopoulou et  al.  2015), be-
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cause it  increases measurement interruptions, and 
sampling hours, decreases accuracy, and ultimately 
increases costs (Mugasha et al. 2019).

Hyrcanian forests in northern Iran cover around 
1.65  million ha and have uneven-aged structures, 
dense stands, and mountainous conditions (Nazari 
Sendi et al. 2014). These forests have valuable spe-
cies such as  oriental beech, European hornbeam, 
Caucasian alder, Persian ironwood, chestnut-
leaved oak and lime tree (Nazari Sendi et al. 2020). 
Oriental beech (Fagus orientalis Lipsky) in north-
ern Iran is  distributed from Astara to  the Golid-
aghi region. As  the most valuable species, forest 
area (17.6%) and standing volume (23.6%) (Rasaneh 
et  al.  2001), and in  the Shafaroud basin (28% and 
53%), forest planning is based on this species (Naz-
ari Sendi et al. 2020). Although constant monitor-
ing of beech stands is so important, measuring the 
tree height is difficult due to the size, density and 
steepness of beech stands. In this regard, the most 
significant technique forest experts and managers 
provide to  solve this problem is  height-diameter 
models (Temesgen, Gadow 2004).

As tree height increases nonlinearly with stem 
diameter (Zeide  1993), the nonlinear height-di-
ameter  (H-D) models estimate height from the 
diameter (Ng'andwe et al. 2019). Nonlinear regres-
sion models also have several advantages, such 
as  producing biologically logical predictions, in-
terpretability and parsimony, which means fewer 
variables are needed to  discover the relationships 
between them (Mehtätalo et al. 2015).

Some studies of  H-D  relationship for different 
species in Hyrcanian forests have already been per-
formed. Nazari Sendi et al. (2020) used the artificial 
neural network and nonlinear H-D models to esti-
mate the height of the lime tree. The results showed 
that the artificial neural network model was more 
efficient than the nonlinear models.

After modelling and testing 18  nonlinear mod-
els for hornbeam in Shastkalateh forests of Gorgan 
(Golestan province, Eastern of Hyrcanian forests), 
Mohammadi and Shataee (2017) did not observe 
any significant difference between the applied mod-
els, but the hyperbolic, Ratkofsky, Richard-chap-
man and Weibull models were better predictors 
as compared to other models. Hassanzad Navroodi 
et  al.  (2016) showed that the Reed (1920) model 
for velvet maple in  Asalem forests was more suit-
able than other models. Ahmadi et al. (2014) devel-
oped several nonlinear models for oriental beech 

in  the middle of  the Hyrcanian forests (Kajour, 
Mazandaran Province) demonstrating that Weibul, 
Schnute and Chapman-Richards functions pro-
vided the most satisfactory predictions of  height. 
Scaranello et al. (2012) examined the H-D relation-
ship of  trees in  the Atlantic tropics based on  four 
sea-level elevations in Brazil. The results indicated 
that the altitude factor affected the estimation of the 
height of trees. To better manage the forest stands 
of two species of jack pine (Pinus banksiana Lamb) 
in Ontario, Canada, Zhang et al. (2002) investigated 
the effect of  eco-region on  the H-D  relationship 
using the Chapman-Richards function as  the best 
model. The important thing about using these rela-
tionships is that the use of these models may involve 
data extraction errors. Thus, their ability to estimate 
should be measured in advance (Thanh et al. 2019).

One of  the methods that have overcome this 
problem, the usage of  which has grown consider-
ably in  various fields in  recent years, is  artificial 
intelligence (Jordan, Mitchell 2015). Artificial neu-
ral network (ANN) models are nonlinear mapping 
structures inspired by  the functioning of  human 
brain (Hagan et al. 2014). They can model nonlin-
ear relationships between input and output data 
without needing elaborated knowledge of the pro-
cess under study. ANNs and their comparison with 
H-D models have also been used in  some forest 
studies. In a study conducted by Castaño-Santama-
ría et  al.  (2013) in  the uneven-aged beech forests 
of Spain, the ANN reduced the error rate by 22% 
compared to nonlinear regression.

There have been very few studies on H-D models 
for tree species at  different environmental condi-
tions in Iran. Due to the wide distribution of beech, 
it  is necessary to conduct such a  study on  the ef-
ficiency of the model. In addition, the performance 
of nonlinear H-D models with ANN in different al-
titude classes has been compared only in one case 
so far (Nazari Sendi et al. 2020). Thus, the objectives 
of this study are: (i) to investigate the H-D relation-
ship of oriental beech in the mid and high altitudes, 
(ii) to compare the results of nonlinear H-D mod-
els and ANN, and finally (iii) to determine the best 
model out of the evaluated models.

MATERIAL AND METHODS

Study area. This study was conducted in  the 
Shafaroud watershed forests of  Guilan prov-
ince. Forests in  the Shafaroud watershed are 

https://www.agriculturejournals.cz/web/jfs/


417

Journal of Forest Science, 69, 2023 (10): 415–426	 Original Paper

https://doi.org/10.17221/93/2022-JFS

natural, uneven-aged with deciduous species dom-
inated by oriental beech (Fagus orientalis Lipsky). 
The  canopy cover of  these forests is  80–85% and 
close to nature silviculture is used as the manage-
ment method, while a  single selection method 
was used in  the previous decades. The  geological 
substrates consist of acidic igneous rocks and the 
soil type in  the whole area of  the Shafaroud wa-
tershed is  forest brown soil. The  average annual 
temperature is  15.4 °C  and the mean precipita-
tion is  1 450 mm, the largest rainfalls occurring 
in spring and autumn. Due to maximum tempera-
tures, relative air humidity is  low and maximum 
relative air humidity occurs in  the winter season 
(Nazari Sendi et al. 2020).

Oriental beech distribution ranges from mid 
to  high altitudes and across different slope class-
es (10–80%). Even though the slope is  one of  the 
important environmental variables, in  this study, 
no significant difference between the diameter and 
height of oriental beech was observed in the slope 

classes (less than 30%, 30–60%, and more than 60%). 
Oriental beech trees in two different regions were 
investigated based on  altitude classes, name-
ly district No. 7  in  high-altitude (950–1 450 m) 
and  district  No.  16 in  mid-altitude  (500–950 m). 
In high altitude, this species is associated with the 
European hornbeam (Carpinus betulus), Cauca-
sian alder (Alnus subcordata) and Persian iron-
wood (Parrotia persica), and in  mid-altitude with 
chestnut-leaved oak (Quercus castanefolia) and 
lime tree (Tilia begonifolia). In district No. 7, two 
compartments (17 and 18) and in district No. 16, 
also two compartments (29  and  30) were investi-
gated (Figure 1).

Data collection. In order to model the H-D rela-
tionship, the data from 255 sample plots were col-
lected in  the years 2019–2020. For  this purpose, 
the systematic random sampling method and cir-
cular sample plots each with an area of 0.1 ha with 
100  ×  100 m regular randomized grid were used. 
In  the plots, the geographical coordinates of  trees 

Figure 1. General location of the study area and location of the studied sites (A) Asia, (B) Iran, (C) Guilan province, 
(D) Shafaroud watershed, (E) district No. 7 (compartment 17 and 18), (F) district No. 16 (compartment 29 and 30)
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with centimetre accuracy from the plot centre and 
azimuth were recorded. DBH of oriental beech was 
measured using a  caliper (Haglöf, Sweden) and 
height by employing Spiegel-relascope 'Silvanus' (Sil-
vanus, Austria; Zobeiry 2005). Measuring the diam-
eter at breast height (1.30 m) requires that the trees 
have reached a certain level of diameter growth.

Model development and comparison. The sum-
mary statistics of beech trees are presented in Table 1.

Height-diameter nonlinear models. Over the 
years, several models have been developed for 
estimating tree height. If  this relationship is  sig-
moid, concave or  close to  it, nonlinear models 
can be  used (Shen et  al.  2020). First, 31  nonlin-
ear models that had acceptable results in the same 
kind of studies were selected and for this purpose, 
we employed SigmaPlot (Version 14, 2018; Nazari 
Sendi et al. 2020). In order to model H-D relation-
ship for beech, the data set was randomly divided 
into fitting (70%) and an evaluation (30%) data set. 
Following a  review of  the model findings based 
on estimated height and performance criteria, se-
lected models are described in Table 2.

Artificial neural networks. The  most funda-
mental kind of  artificial neural network (ANN) 
is  feed-forward multilayer perceptron (MLP) that 
consists of three layers: an input layer, one hidden 
layer, and an  output layer. Each input has an  as-
sociated weight and each output has an activation 
function (Maier, Dandy  2000). The  input signals 
are propagated feed-forward through the network, 
layer after layer. The  network topology consists 
of a set of nonlinear elements (neurons) connected 
by  links and normally arranged in  successive lay-
ers. Each neuron has a set of  inputs. The purpose 
of the input layer is to pass on the values received 
to  the neurons in  the hidden layer (Kalteh  2017). 

The neurons in the hidden layer have the number 
of  inputs equal to  the number of  outputs from 
the previous layer. The number of output neurons 
of  the network is  the number of  parameters that 
the ANNs will estimate. The output value of each 
neuron is  calculated according to  Equation  (1) 
(Hagan et al. 2014).

0
1

n

j i i
i

a w x w
=

= + ×∑ 	 (1)

where:
aj	 – output of neuron j;
n	 – number of inputs;
xi , wi	 – value and weight of input i;
w0	 – neuron bias.

In  order to  select the optimal hidden neu-
rons, a  trial-and-error procedure was considered. 
The  number of  hidden neurons started with one 
and increased up  to  10  in  each trial. To  resolve 
the problem of  overfitting, among the trained 
networks, the network with the lowest root mean 
square error (RMSE) on the validation set was se-
lected as the optimum ANN model for each input 
combination (Kalteh 2017).

Several activation functions can be  used 
on MLP network. In this study, the hyperbolic tan-
gent, also known as the tan-sigmoid or tansig (Hagan 
et al. 2014), was used for the hidden layer neurons 
and the output layer neuron, see Equation (2).

2( ) tanh( ) – 1
1 exp(–2 )

j j j
j

a a
a

ϕ = =
 + 

	 (2)

where:
jϕ 	 – output of the j th node (neuron).

Table 1. Summary statistics of beech trees

Region Data No. of trees
Diameter Height

mean min max SE mean min max SE

High-altitude

total 1 467 33.6 7.5 152.5 36.8 14.6 3.3 38.2 9.7

fitting 1 026 34.1 7.5 152.5 36.6 14.7 3.3 38.2 9.9

evaluation 441 32.4 7.5 151.2 37.5 14.3 5.0 37.9 9.3

Mid-altitude

total 1 776 43.5 7.5 158.3 32.5 21.7 4.2 46.6 9.9

fitting 1 243 43.4 7.5 158.3 30.8 21.8 6.0 46.6 9.8

evaluation 533 43.8 7.5 152.5 36.1 21.4 4.2 44.9 10.3

SE – standard error
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Levenberg-Marquardt algorithm. The  MLP 
training is  divided into three stages: the propaga-
tion of input training patterns, error calculation and 
back-propagation of this error to adjust the weights 
of the neurons (Kalteh 2017). Several algorithms can 

be  used to  train the MLPs, the back-propagation 
training algorithm being the most popular one. But 
this algorithm poses several problems: it works at low 
speed, it needs a  lot of off-line training, it exhibits 
temporal oscillations and it  also tends to  become 

Table 2. Height-diameter models selected for comparison

Model Function Model name

1 1.3 bh a DBH= + × Schreuder et al. (1979)

2 1.3
a DBH

h
b DBH

×
= +

+
Bates and Watts (1980)

3 (– )1.3 1 – exp b DBHh a × = + ×   Meyer (1940)

4 1.3 exp
b

DBHh a= + × Burkhart-Strub (1974)

5
2

2

1.3

( )

DBH
h

a b DBH

+
=

+ ×
Loetsch et al. (1973)

6 1.3 ( )
( 1)

a DBH
h b DBH

DBH

×
= + + ×

+
Watts (1983)

7 1.3 10a bh DBH= + × Larson (1986)

8
2

21.3 DBHh
a b DBH c DBH

= +
+ × + × Tomé (1988)

9
–

1.3
cb DBHh a DBH ×= + × Sibbesen (1981)

10 –1.3 (1 – exp )b DBH ch a ×= + × Richards (1959)

11 –1.3 (1 – exp )b DBHh a ×= + × Yang et al. (1978)

12 ( )1.3 exp
b

DBH ch a += + × Ratkowsky (1990)

13
2

21.3 DBHh
a b DBH c DBH

= +
+ × + × Prodan (1968)

14 ( )1.3 exp ch a b DBH = + + ×
  Curtis (1981)

15 artificial neural network ANN

a, b, c – model parameters to be estimated; DBH – diameter at breast height (cm); exp – the base of natural logarithm raised 
to a power of a number (exponent); h – total tree height (m)
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stuck at local minima (Diamantopoulou et al. 2015). 
Therefore, we used the Levenberg-Marquardt learn-
ing algorithm. This algorithm is a refinement of the 
Gauss-Newton method, which is a variant of New-
ton's method. Newton's method uses information 
from the second-order partial derivative of the per-
formance index used to  adjust the weights. Thus, 
gradient information is  used in  conjunction with 
error surface curvature information. In a few words, 
Levenberg-Marquardt (LM) algorithm introduces 
the approximation to Hessian matrix (Hm) that is ex-
pressed in Equation (3), where J is the Jacobian ma-
trix that contains the first derivatives of the network 
errors to the weights and biases, μ is the combina-
tion coefficient that is  always positive and I  is  the 
identity matrix. The  update rule of  the LM  algo-
rithm is expressed by Equation (4), where w are the 
weights, and e are the biases. The effectiveness and 
convergence of  the Levenberg-Marquardt artificial 
neural network (LMANN) models are very sensitive 
to the adjustment of the combination coefficient (μ) 
of Equation (3) (Hagan et al. 2014).

( )T
m i i iH J J I= + µ 	 (3)

where:
Hm	 – Hessian matrix;
I	 – identity matrix;
J	 – Jacobian matrix;
μ	 – combination coefficient.

–1
1 – ( ) T

i i m i iw w H J e+ = 	 (4)

where:
e	 – biases;
w	 – weights.

The  measured data set was randomly divided 
into a fitting data set (70%) and an evaluation data 
set (30%) and then the data were normalized from 
–1 to 1 (Hagan et al. 2014). Diameter at breast height 
and height were used as input and output variables. 
Network training was performed by multilayer per-
ceptron with LM algorithm in MATLAB software 
(Version 8.6, 2015) (Figure 2).

Model evaluation criteria. The  data were fitted 
using nonlinear regression and the  ordinary least-
squares (OLS) technique. Four performance measur-
ing criteria were used in  this study: (i)  root mean 
square error (RMSE) that provides information about 

the short-term performance of a model by allowing 
a term-by-term comparison of the actual difference 
between the estimated and the measured value, 
the smaller the value, the better the  model's per-
formance; (ii) adjusted coefficient of determination 
( 2

adjR ) that is a modified version of R2 that has been 
adjusted for the number of predictors in the model 
(Sharma, Breidenbach 2015), the 2

adjR  increases when 
the new term improves the model more than would 
be expected by chance; (iii) Akaike's information cri-
terion (AIC) is a single number score that can be used 
to determine which of multiple models is most like-
ly  to be the best model for a given data set, it esti-
mates models relatively, meaning that AIC scores are 
only useful in comparison with other AIC scores for 
the same data set, a lower AIC score is better (Burn-
ham, Anderson  2004); (iv)  mean absolute error 
(MAE) is a measure of errors between paired obser-
vations expressing the same phenomenon (Willmott, 
Matsuura 2005), see Equations (5–8).

2
1

ˆ( – )
n

i ii
H H

RMSE
n

==
∑ 	 (5)

where:
Hi	 – observed height;
Ĥi	 – estimated height by the models;
n	 – total number of data used for fitting the model;
RMSE	– root mean square error.

Figure 2. A three-layer perceptron
DBH – diameter at breast height
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2
2 1

2
1

( – 1) ( – )
1 –

( – ) ( – )

n
i ii

adj n
ii

n H H
R

n p H H
=

=

=
∑
∑



	 (6)

where:
H 	 – mean of estimated values;
 p	 – number of model parameters;

2
adjR 	 – adjusted coefficient of determination.

AIC = n × ln(RMSE) + 2p	 (7)

where:
AIC	 – Akaike's information criterion.

1
( – )

n
i ii

H H
MAE

n
==

∑


	 (8)

where:
MAE	 – mean absolute error.

Also, in  order to  examine the predictive ability 
of the models, 45-degree line plots were produced 
for all models (Diamantopoulou et al. 2015).

RESULTS

Model development. Before modelling the 
H-D  models, the DBH  and height distributions 
of  beech were investigated based on  each of  the 

important topographic variables such as  slope 
(less than 30%, 30–60%, and more than 60%) and 
elevation classes. The  analysis of  variance of  di-
ameter and height for beech based on slope class-
es in  each region did not show any significant 
differences (Table 3).

Also, one sample t-test did not show significant 
differences between diameter and height in two al-
titude regions (Table 4).

Diameter and height relationship. The  rela-
tionship of diameter and height of beech in both el-
evation classes was nonlinear (Figure 3) and based 
on  mathematical functions it  was a  sigmoid type. 
According to these graphs, in high-altitude region 
for beech trees with a  diameter less than 40 cm, 
the growth ratio of  height to  diameter is  higher 
than for trees with a diameter greater than 40 cm. 
On the other hand, in the mid-altitude region this 
occurred at 60 cm (Figure 3).

Nonlinear model parameters. The OLS techniques 
were applied to  estimate model fitting parameters 
for the model calibration dataset, see Table S1 in the 
Electronic Supplementary Material (ESM).

Optimum number of neurons in the artificial 
neural network. Among the trained ANN models, 
the model with the least RMSE  in  the testing set 
was chosen as the final optimum model. To decide 
on the optimum number of neurons in hidden lay-
er, a  trial-and-error approach was considered and 
number of neurons in the hidden layer was initially 
set from 1 to 10 neurons and each of them repeat-

Table 3. Analysis of variance for beech in slope classes

Region Variable Source SS df MS F P-value

High-altitude

DBH
between groups 3 326.285 2 1 663.142

1.223 0.295nswithin groups 1 990 972.649 1 464 1 359.954
total 1 994 298.934 1 466 –

height
between groups 187.551 2 93.775

0.990 0.372nswithin groups 138 660.244 1 464 94.713
total 138 847.795 1 466 –

Mid-altitude

DBH
between groups 2 237.594 2 1 118.797

1.060 0.347nswithin groups 1 872 034.849 1 773 1 055.857
total 1 874 272.443 1 775 –

height
between groups 454.243 2 227.122

2.310 0.100nswithin groups 174 341.902 1 773 98.332
total 174 796.146 1 775 –

ns non-significant; DBH – diameter at breast height; df – degrees of  freedom; F – Fisher's F  ratio; MS – mean squares; 
SS – sum of squares
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ed 100 times. Finally, the network with 5 neurons 
in  the hidden layer posed the least RMSE  in  the 
testing set in two regions.

Model fitting and selection. The  goodness 
of  fit results and prediction accuracy of  the 
high-altitude and mid-altitude regions for cali-
bration and validation datasets are reported in Ta-
bles  S2  and  S3  in  the ESM. In  the high-altitude 
class, the 2

adjR   ranged from 0.901  to  0.977  and 
the average was about  0.97. The  RMSE  ranged 
from 1.387  to  2.905  in  the calibration dataset. 
The  best AIC  belongs to  Model  14  and Mod-
el  3, and these two models also have the lowest 

MAE (Table S1 in the ESM). For the mid-altitude 
class, the 2

adjR  ranged from 0.910 to 0.988 and the 
RMSE ranged from 1.289 to 3.447 in  the calibra-
tion dataset. In  this class, Model  2  had the best 
performance for AIC  (139.22) and MAE (0.978), 
(Table S2 in the ESM).

High-altitude. The  RMSE  result revealed that 
the lowest value belongs to  Model  3  with 1.387, 
Model 14 with 1.396, and Model 8 with 1.401 re-
spectively (Table S1 in the ESM).

Mid-altitude. The  RMSE  results indicated that 
the lowest value belongs to  Model  2  with 1.289, 
Model 13 with 1.315, and Model 8 with 1.316 re-
spectively (Table S2 in the ESM).

The graphical technique revealed that the points 
in  the chosen models did not lean in  one direc-
tion and gathered around the identity line. In each 
of  the two regions, the artificial neural network 
showed a better balanced fit than the selected non-
linear models (Figure 4).

Inspecting the standard residual diagram 
against the estimated height indicated that the 

Figure 3. Height and diameter relationship of beech
DBH – diameter at breast height

Table 4. The t-test for beech in mid and high altitudes

Variables t df Sig. (2-tailed)

DBH 63.710 3 242 0.001

Height 100.694 3 242 0.001

DBH – diameter at breast height; df – degrees of freedom; 
sig. – significant; t – Student's t-statistic
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ANN  technique provided a  more accurate esti-
mate than the nonlinear models chosen (Ogana, 
Ercanli 2021; Figure 5).

DISCUSSION

Tree height is, along with the tree diameter, an es-
sential variable in describing characteristics of for-
est stands (Sharma et  al.  2018). Also, it  is  used 
in height to diameter ratio (HDR), known as slen-
derness coefficient, to evaluate the stability of trees 
and forest stands (Sharma et  al.  2016b). The  de-
velopment of  models such as  H-D  functions has 
been considered and replaced with the direct tree 
height measurement. Based on  descriptive statis-
tics, the diameter values for beech show differences 
in  high-altitude and mid-altitude regions. Howev-
er, in this study, there was only a minor difference be-
tween the values for high-altitude and mid-altitude 
regions: 152.5 and 158.5 cm, respectively (Moham-
madi, Shataee  2018). However, it  should be  noted 

that beech diameter average in  mid-altitude was 
higher than in  the high-altitude region. The  main 
reason is  that the forest stand quality of  mid-alti-
tude is  considerably better compared to  the high-
altitude region (Mugasha et al. 2019). This indicates 
that environmental conditions and geo-statistical 
variables, especially the altitude factor, would sig-
nificantly impact changes in  the growth of  beech, 
as also found by Scaranello et al. (2012) and Králíček 
et al. (2017), where various models performed dif-
ferently in different locations. Other reasons for this 
include the presence of diverse species, the vegeta-
tive nature of beech and variations in diameter and 
height development throughout vegetative periods, 
competition, and the many interactions of  beech 
with these species (Ahmadi et al. 2013).

The assessment of  H-D  nonlinear models for 
beech in  the two regions at  the high-altitude and 
mid-altitude revealed that the efficiency of  the 
nonlinear models to  estimate the height of  beech 
was very different (Nazari Sendi et  al.  2020). 

Figure 4. Measured height against estimated values

Figure 5. Residuals against estimated height for the best nonlinear models and ANNs

ANNs – artificial neural networks
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An elite model has the smallest RMSE and the larg-
est  2

adjR , which means that it outperforms the other 
models (Pham  2019). When some models have 
similar RMSE  and 2

adjR , AIC,  and MAE  criteria 
play an  important role to  select the best model 
(Sanquetta et al. 2018). The Model 3 (Meyer 1940) 
had the highest accuracy in  the high-altitude re-
gion, while in  the mid-altitude, this model was 
one of  the weaker models. One of  the important 
points is that the best model for each species is ap-
propriate to the type of species and related to their 
habitat conditions.

The results of this research validated earlier stud-
ies and findings that ANN  model had better per-
formance than nonlinear models. This model has 
the highest accuracy in  estimating beech height 
rather than nonlinear models in  both regions 
(Thanh et  al.  2019). It  had the lowest error rate 
compared to the best nonlinear H-D models, which 
was consistent with the results of Diamantopoulou 
et al. (2015). Thus, this approach is recommended 
in similar studies and to forest managers as a suit-
able and alternative method to  the usual nonlin-
ear models, which uses one factor as  input and 
has good results regardless of  environmental ef-
fects (Štefančík et al. 2018). The desired results can 
be achieved only by accurately measuring the diam-
eter and selecting the appropriate model, while de-
creasing the costs, time, and error rate. In general, 
it can be stated that each growing area requires dif-
ferent planning for the management of forest stands 
(Nazari Sendi et al. 2014), especially in pure stands. 
Also, the use of  nonlinear H-D  models with the 
highest accuracy or  ANN  that can perform satis-
factory estimation in habitats with different condi-
tions is recommended to forest managers.

CONCLUSION

Due to  geographical limitations, measuring tree 
height in natural forests takes a long time and makes 
it more expensive, thus the best approach is to use 
height-diameter models. The most important topo-
graphic factor is altitude, which has several effects 
on the distribution of species, as well as their qual-
ity and quantity. Beech is  the main forest species 
in  northern Iran, distributed mainly in  the moun-
tainous areas from the midland to  the highlands. 
In  this study, the height-diameter relationship for 
beech was based on altitude classes. Our findings in-
dicated that nonlinear H-D models for beech in dif-

ferent stand characteristics, especially altitudes, 
are required to produce more accurate predictions 
of tree height. Also, the suitable models for the two 
classes of  high-altitude and mid-altitude are com-
pletely different in  terms of  type and order. In  us-
ing nonlinear H-D models, it should be noted how 
much the independent habitat variables (e.g. altitude 
and other environmental variables) affect the height 
estimated from tree diameter. Considering the im-
portance of forest habitats in northern Iran, future 
research in  this region and related environments 
should take this  into consideration. In  this regard, 
nonlinear models with mixed effects can be  pro-
posed and presented. It should also be emphasized 
that since the environmental conditions are differ-
ent across various forest stands, to avoid errors and 
select the best model for a species, data integration 
should be avoided and the H-D model should be de-
veloped based on a diameter-height relationship in-
vestigated separately in each different habitat.
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