J. For. Sci., 2020, 66(4):133-149 | DOI: 10.17221/141/2019-JFS

Retrieval of among-stand variances from one observation per standOriginal Paper

Steen Magnussen*,1, Johannes Breidenbach2
1 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria BC, Canada
2 Norwegian Institute of Bioeconomy Research, Ås, Norway

Forest inventories provide predictions of stand means on a routine basis from models with auxiliary variables from remote sensing as predictors and response variables from field data. Many forest inventory sampling designs do not afford a direct estimation of the among-stand variance. As consequence, the confidence interval for a model-based prediction of a stand mean is typically too narrow. We propose a new method to compute (from empirical regression residuals) an among-stand variance under sample designs that stratify sample selections by an auxiliary variable, but otherwise do not allow a direct estimation of this variance. We test the method in simulated sampling from a complex artificial population with an age class structure. Two sampling designs are used (one-per-stratum, and quasi systematic), neither recognize stands. Among-stand estimates of variance obtained with the proposed method underestimated the actual variance by 30-50%, yet 95% confidence intervals for a stand mean achieved a coverage that was either slightly better or at par with the coverage achieved with empirical linear best unbiased estimates obtained under less efficient two-stage designs.

Keywords: coverage; heteroscedasticity; one-per-stratum; quasi systematic; stand mean; two-stage sampling

Published: April 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Magnussen S, Breidenbach J. Retrieval of among-stand variances from one observation per stand. J. For. Sci. 2020;66(4):133-149. doi: 10.17221/141/2019-JFS.
Download citation

References

  1. Anderson T.W., Darling D.A. (1952): Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Annals of Mathematical Statistics, 23: 193-212. Go to original source...
  2. Bailey R.L., Dell T.R. (1973): Quantifying diameter distributions with the Weibull function. Forest Science, 19: 97-104.
  3. Bolker B.M., Brooks M.E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M.H.H., White J.S.S. (2009): Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24: 127-135. Go to original source... Go to PubMed...
  4. Breidenbach J., Magnussen S., Rahlf J., Astrup R. (2018): Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data. Remote Sensing of Environment, 212: 199-211. Go to original source...
  5. Breidenbach J., McRoberts R.E., Astrup R. (2016): Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume. Remote Sensing of Environment, 173: 274-281. Go to original source... Go to PubMed...
  6. Breidt F.J., Opsomer J.D., Sanchez-Borrego I. (2016): Nonparametric Variance Estimation Under Fine Stratification: An Alternative to Collapsed Strata. Journal of the American Statistical Association, 111: 822-833. Go to original source...
  7. Cao Q.V. (2004): Predicting parameters of a Weibull function for modeling diameter distribution. Forest Science, 50: 682-685. Go to original source...
  8. Casella G., Berger R.L. (2002): Statistical Inference. Pacific Grove, Duxbury Press: 660.
  9. Cochran W.G. (1977): Sampling Techniques. New York, Wiley: 380.
  10. Cordy C.B. (1993): An extension of the Horvitz-Thompson theorem to point sampling from a continuous universe. Statistics and Probability Letters, 18: 353-362. Go to original source...
  11. Corona P. (2016): Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environmental research, 144: 8-14. Go to original source... Go to PubMed...
  12. Corona P., Fattorini L. (2008): Area-based lidar-assisted estimation of forest standing volume. Canadian Journal of Forest Research, 38: 2911-2916. Go to original source...
  13. Corona P., Fattorini L., Franceschi S., Chirici G., Maselli F., Secondi L. (2014): Mapping by spatial predictors exploiting remotely sensed and ground data: A comparative design-based perspective. Remote Sensing of Environment, 152: 29-37. Go to original source...
  14. Dahlke M., Breidt F.J., Opsomer J.D., Van Keilegom I. (2013): Nonparametric endogenous post-stratification estimation. Statistica Sinica, 23: 189-211. Go to original source...
  15. Dalenius T., Hodges J.L.J. (1959): Minimum variance stratification. Journal of the American Statistical Association, 54: 88-101. Go to original source...
  16. Darroch N., Ratcliff D. (1971): A characterization of the Dirichlet distribution. Journal of the American Statistical Association, 66: 641-643. Go to original source...
  17. Duane M.V., Cohen W.B., Campbell J.L., Hudiberg T., Turner D.P., Weyermann D.L. (2010): Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests. Forest Science, 56: 405-416. Go to original source...
  18. Dubey S.D. (1970): Compound gamma, beta and F distributions. Metrika, 16: 27-31. Go to original source...
  19. Duplat P., Perrotte G. (1981): Inventory and Estimation of the Growth of Forest Stands. Paris, Office National des Forêts: 432.
  20. Eerikäinen K. (2009): A multivariate linear mixed-effects model for the generalization of sample tree heights and crown ratios in the Finnish National Forest Inventory. Forest Science, 55: 480-493. Go to original source...
  21. Ene L.T., Gobakken T., Andersen H.E., Naesset E., Cook B.D., Morton D.C., Babcock C., Nelson R. (2018): Large-area hybrid estimation of aboveground biomass in interior Alaska using airborne laser scanning data. Remote Sensing of Environment, 204: 741-755. Go to original source...
  22. Evert F. (1983): An equation for estimating total volume of both stands and single trees of black spruce. The Forestry Chronicle, 59: 26-29. Go to original source...
  23. Fattorini L. (2015): Design-based methodological advances to support national forest inventories: a review of recent proposals. iForest - Biogeosciences and Forestry, 8: 6-11. Go to original source...
  24. Fattorini L., Franceschi S., Pisani C. (2009): A two-phase sampling strategy for large-scale forest carbon budgets. Journal of Statistical Planning and Inference, 139: 1045-1055. Go to original source...
  25. Fazar W. (1959): Program evaluation and review technique. The American Statistician, 13: 10-16.
  26. Fischer M. (2010): Multivariate Copulae. In: Kurowicka D., Joe H. (eds): Dependence Modeling. Singapore, World Scientific: 19-36. Go to original source...
  27. Fraley C., Raftery A.E. (1998): How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal, 41: 314-327. Go to original source...
  28. Goerndt M.E., Monleon V.J., Temesgen H. (2011): A comparison of small-area estimation techniques to estimate selected stand attributes using LiDAR-derived auxiliary variables. Canadian Journal of Forest Research, 41: 1189-1201. Go to original source...
  29. Grafström A., Ringvall A.H. (2013): Improving forest field inventories by using remote sensing data in novel sampling designs. Canadian Journal of Forest Research, 43: 1015-1022. Go to original source...
  30. Grafström A., Saarela S., Ene L.T. (2014): Efficient sampling strategies for forest inventories by spreading the sample in auxiliary space. Canadian Journal of Forest Research, 44: 1156-1164. Go to original source...
  31. Grafström A., Schnell S., Saarela S., Hubbell S.P., Condit R. (2017): The continuous population approach to forest inventories and use of information in the design. Environmetrics, 28: e2480-n/a. Go to original source...
  32. Harvey A.C. (1976): Estimating regression models with multiplicative heteroscedasticity. Econometrica, 44: 461-465. Go to original source...
  33. Holmström H., Fransson J.E.S. (2003): Combining remotely sensed optical and radar data in kNN-estimation of forest variables. Forest Science, 49: 409-418. Go to original source...
  34. Izenman A.J. (1991): Recent development in nonparametric density estimation. Journal of the American Statistical Association, 86: 205-224. Go to original source...
  35. Jiang J., Lahiri P. (2006): Mixed Model Prediction and Small Area Estimation. TEST, 15: 1-96. Go to original source...
  36. Junttila V., Karuanne T., Leppänen V. (2010): Estimation of forest stand parameters from airborne laser scanning using calibrated plot databases. Forest Science, 56: 257-270. Go to original source...
  37. Kangas A., Astrup R., Breidenbach J., Fridman J., Gobakken T., Korhonen K.T., Maltamo M., Nilsson M., Nord-Larsen T., Naesset E. (2018): Remote sensing and forest inventories in Nordic countries - roadmap for the future. Scandinavian Journal of Forest Research, 33: 397-412. Go to original source...
  38. Katila M., Tomppo E. (2002): Stratification by ancillary data in multisource forest inventories employing k-nearestneighbour estimation. Canadian Journal of Forest Research, 32: 1548-1561. Go to original source...
  39. Kleinn C. (1994): Comparison of the performance of line sampling to other forms of cluster sampling. Forest Ecology and Management, 68: 365-373. Go to original source...
  40. Koch B. (2011): Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 65: 581-590. Go to original source...
  41. Levene H. (1960): Robust tests for equality of variances. In: Olkin I. (Ed.): Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Standford, Standford University Press: 278-292.
  42. Li F., Zhang L., Davis C.J. (2002): Modeling the joint distribution of tree diameters and heights by bivariate generalized beta distribution. Forest Science, 48: 47-58. Go to original source...
  43. Liu G., Liang K.Y. (1997): Sample Size Calculations for Studies with Correlated Observations. Biometrics, 53: 937-947. Go to original source... Go to PubMed...
  44. Maas C.J.M., Hox J.J. (2005): Sufficient Sample Sizes for Multilevel Modeling. Methodology, 1: 86-92. Go to original source...
  45. MacLeod D. (1978): The Forest Management Institute Tree Data Bank. Ottawa, Forest Management Institute in Ottawa. Information Report FMR-X-112: 16.
  46. Magnussen S. (1986): Diameter distributions in Picea abies described by the Weibull model. Scandinavian Journal of Forest Research, 1: 493-502. Go to original source...
  47. Magnussen S. (2016): A new mean squared error estimator for a synthetic domain mean. Forest Science, 63: 1-9. Go to original source...
  48. Magnussen S. (2018): An estimation strategy to protect against over-estimating precision in a LiDAR-based prediction of a stand mean. Journal of Forest Science, 64: 497-505. Go to original source...
  49. Magnussen S., Breidenbach J. (2017): Model-dependent forest stand-level inference with and without estimates of stand-effects. Forestry: An International Journal of Forest Research, 90: 675-685. Go to original source...
  50. Magnussen S., Frazer G., Penner M. (2016): Alternative meansquared error estimators for synthetic estimators of domain means. Journal of Applied Statistics, 43: 2550-2573. Go to original source...
  51. Magnussen S., Mauro F., Breidenbach J., Lanz A., Kändler G. (2017): Area-level analysis of forest inventory variables. European Journal of Forest Research, 136: 839-855. Go to original source...
  52. Magnussen S., Naesset E., Gobakken T. (2015): LiDAR supported estimation of change in forest biomass with time invariant regression models. Canadian Journal of Forest Research, 45: 1514-1523. Go to original source...
  53. Mäkelä H., Pekkarinen A. (2004): Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 196: 245-255. Go to original source...
  54. Mauro F., Molina I., García-Abril A., Valbuena R., AyugaTéllez E. (2016): Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels. Environmetrics, 27: 225-238. Go to original source...
  55. Mbachu H., Nduka E., Nja M. (2012): Designing a Pseudo RSquared Goodness-of-Fit Measure in Generalized Linear Models. Journal of Mathematics Research, 4: 148. Go to original source...
  56. Melville G., Stone C., Turner R. (2015): Application of LiDAR data to maximise the efficiency of inventory plots in softwood plantations. New Zealand Journal of Forestry Science, 45: 1-9. Go to original source...
  57. Mostafa S.A., Ahmad I.A. (2017): Recent developments in systematic sampling: A review. Journal of Statistical Theory and Practice, 12: 1-21. Go to original source...
  58. Muukkonen P., Heiskanen J. (2007): Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment, 107: 617-624. Go to original source...
  59. Naesset E. (2014): Area-based inventory in Norway - from innovation to an operational reality. In: Maltamo M., Naesset E., Vauhkonen J. (eds) :Forestry Applications of Airborne Laser Scanning. Dordrecht, Springer: 215-240. Go to original source...
  60. Newton P., Amponsah I. (2007): Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lackof-fit and predictive ability. Forest Ecology and Management, 247: 149-166. Go to original source...
  61. Nothdurft A., Saborowski J., Breidenbach J. (2009): Spatial prediction of forest stand variables. European Journal of Forest Research, 128: 241-251. Go to original source...
  62. Pagliarella M.C., Corona P., Fattorini L. (2018): Spatiallybalanced sampling versus unbalanced stratified sampling for assessing forest change: evidences in favour of spatial balance. Environmental and Ecological Statistics, 25: 111-123. Go to original source...
  63. Payandeh B. (1991): Plonski's (metric) yield tables formulated. The Forestry Chronicle, 67: 545-546. Go to original source...
  64. Pinheiro J.C., Bates D.M. (2000): Mixed-effects models in S and S-plus. New York, Springer: 1-528. Go to original source...
  65. Plonski W. (1960): Normal Yield Tables for Black Spruce, Jack Pine, Aspen, White Birch, Tolerant Hardwoods, White Pine, and Red Pine for Ontario. Ontario, Ontario Department od Land and Forests. Silvicultural Series Bulletin 2: 39.
  66. Puliti S., Ene L.T., Gobakken T., Naesset E. (2017): Use of partial-coverage UAV data in sampling for large scale forest inventories. Remote Sensing of Environment, 194: 115-126. Go to original source...
  67. Räty M., Heikkinen J., Kangas A. (2018): Assessment of sampling strategies utilizing auxiliary information in large-scale forest inventory. Canadian Journal of Forest Research, 48: 749-757. Go to original source...
  68. Rennolls K., Wang M. (2005): A new parameterization of Johnson's SB distribution with application to fitting forest tree diameter data. Canadian Journal of Forest Research, 35: 575-579. Go to original source...
  69. Saarela S., Grafström A., Ståhl G., Kangas A., Holopainen M., Tuominen S., Nordkvist K., Hyyppä J. (2015): Modelassisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information. Remote Sensing of Environment, 158: 431-440. Go to original source...
  70. Saarela S., Holm S., Grafström A., Schnell S., Naesset E., Gregoire T.G., Nelson R.F., Ståhl G. (2016): Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73: 895-910. Go to original source...
  71. Särndal C.E., Swensson B., Wretman J. (1992): Model Assisted Survey Sampling. New York, Springer: 694. Go to original source...
  72. Self S.G., Mauritsen R.H. (1988): Power/Sample Size Calculations for Generalized Linear Models. Biometrics, 44: 79-86. Go to original source...
  73. Sexton J.O., Bax T., Siqueira P., Swenson J.J., Hensley S. (2009): A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America. Forest Ecology and Management, 257: 1136-1147. Go to original source...
  74. Snedecor G.W., Cochran W.G. (1971): Statistical Methods. Iowa, Iowa State University Press: 593.
  75. Snijders T.A. (2005): Power and Sample Size in Multilevel Linear Models. In: Everitt B.S., Howell D.C. (eds): Encyclopedia of Statistics in Behavioral Science, 3: 1570-1573. Go to original source...
  76. Spurr S.H. (1952): Forest Inventory. New York, Ronald Press: 476.
  77. Stevens D.L., Olsen A.R. (2004): Spatially balanced sampling of natural resources. Journal of the American Statistical Association, 99: 262-278. Go to original source...
  78. Tam S.M. (1995): Optimal and robust strategies for cluster sampling. Journal of the American Statistical Association, 90: 379-382. Go to original source...
  79. Tomppo E., Malimbwi R., Katila M., Mäkisara K., Henttonen H.M., Chamuya N., Zahabu E., Otieno J. (2014): A sampling design for a large area forest inventory: Case Tanzania. Canadian Journal of Forest Research, 44: 931-948. Go to original source...
  80. von Lüpke N., Hansen J., Saborowski J. (2012): A threephase sampling procedure for continuous forest inventory with partial re-measurement and updating of terrestrial sample plots. European Journal of Forest Research, 131: 1979-1990. Go to original source...
  81. Wilhelm M., Tillé Y., Qualité L. (2017): Quasi-systematic sampling from a continuous population. Computational Statistics & Data Analysis, 105: 11-23. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.