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Abstract: Forest inventories provide predictions of stand means on a routine basis from models with auxiliary variables 
from remote sensing as predictors and response variables from field data. Many forest inventory sampling designs do 
not afford a direct estimation of the among-stand variance. As consequence, the confidence interval for a model-based 
prediction of a stand mean is typically too narrow. We propose a new method to compute (from empirical regression 
residuals) an among-stand variance under sample designs that stratify sample selections by an auxiliary variable, but 
otherwise do not allow a direct estimation of this variance. We test the method in simulated sampling from a complex 
artificial population with an age class structure. Two sampling designs are used (one-per-stratum, and quasi systematic), 
neither recognize stands. Among-stand estimates of variance obtained with the proposed method underestimated the 
actual variance by 30-50%, yet 95% confidence intervals for a stand mean achieved  a coverage that was either slightly 
better or at par with the coverage achieved with empirical linear best unbiased estimates obtained under less efficient 
two-stage designs.
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The availability of wall-to-wall coverage of re-
motely sensed data (X viz. auxiliary variables) cor-
related with one or more study variables of interest 
(Y) offers opportunities to improve the sampling 
designs of forest inventories (Duane et al. 2010; 
Tomppo et al. 2014; Fattorini 2015; Magnussen et 
al. 2017; Breidenbach et al. 2018). Sample selection 
protocols that ensure a uniform sampling density 
in the space spaned by X are becoming increasingly 
popular (Katila, Tomppo 2002; Grafström, Ringvall 
2013; Grafström et al. 2014). Probability sampling 
designs ensuring a uniform dispersion of sample lo-
cations across a spatial population via a tessellation 
scheme as advocated by, for examples, Stevens and 
Olsen (2004) and Cordy (1993) are making inroads 
in natural resource surveys. Moreover, auxiliary va-

riables provide opportunities for post-stratification 
(Dahlke et al. 2013; Ene et al. 2018; Räty et al. 2018).

Current forest enterprise inventory designs ex-
ploiting remotely sensed auxiliary variables appear 
to provide population level estimates with accept-
able levels of precision (Von Lüpke et al. 2012; Co-
rona et al. 2014; Melville et al. 2015; Mauro et al. 
2016; Saarela et al. 2016). Yet a sampling design, 
tailored to provide accurate population level esti-
mates, may not provide stand-level estimates with 
a precision required by management (Magnussen 
et al. 2016). Forest inventories typically have fewer 
sample plots than there are stands in the surveyed 
forest. Hence, most stands will have no informa-
tion from field plots, and inference about stand 
means and their variances derives exclusively from 
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the auxiliary variables and an assumed model fit-
ted to the sample data. Unless the variance from 
stand effects is quantified, a model based variance 
estimator for a stand mean may woefully underes-
timate the actual variance (Breidenbach et al. 2016; 
Magnussen, Breidenbach 2017).

Stand-effects should be expected (Mäkelä, Pekkar-
inen 2004; Eerikäinen 2009; Nothdurft et al. 2009; 
Junttila et al. 2010; Goerndt et al. 2011; Mauro et al. 
2016). Generalized mixed linear, semi-parametric, 
or non-parametric models with stands effects in-
cluded as a random intercept, or as random interac-
tions with one or more of the auxiliary variables in 
the model, have been used to predict stand effects 
and the variance arising from these effects (Jiang, 
Lahiri 2006; Bolker et al. 2009). Suitable sampling 
designs for these modelling approaches requires 
at least two sample plots in a minimum number of 
stands. A study by Maas and Hox (2005) suggests 
that 100 stands may be the minimum to achieve a 
correct coverage of nominal 95% confidence inter-
vals for a stand mean.

For a given sample size, a sampling design that 
has at least two plots in a number of stands, will 
be less efficient in terms of the uncertainty in an 
estimate of a population total (mean) than a design 
without this constraint. We know this from strati-
fied sampling where one sample per stratum is the 
most efficient design (Cochran 1977)(Self, Maurit-
sen 1988; Liu, Liang, 1997; Maas, Hox 2005; Sni-
jders 2005).

Earlier studies have proposed methods for ob-
taining an estimate of the among-stand variance 
from sample data collected under a design that 
does not allow a direct estimation. In these cases 
the among-stand variance is estimated from pre-
dictions of the study variable (Magnussen 2018), or 
statistics such as the intra-cluster correlation coef-
ficient whereby stands are treated as clusters (Mag-
nussen 2016; Magnussen et al. 2016; Magnussen, 
Breidenbach 2017). In this study, we propose a new 
method for obtaining an estimate (from regres-
sion residuals) of the variance arising from stand-
effects. We illustrate the method with two efficient 
sampling designs that stratify sample locations by 
an auxiliary variable, but do not otherwise allow a 
direct estimation of the among-stand variance.The 
first is the one-per-stratum (OPS) design proposed 
by Breidt et al. (2016), and the second is the quasi 
systematic sampling design (QSYST) proposed by 
Wilhelm et al. (2017). In the proposed new meth-

od, an estimate of the among-stand variance is ob-
tained from a modified analysis of variance using 
regression residuals clustered on the basis of the 
auxiliary variable(s) used to allocate sample loca-
tions. Our illustration of the method is based on 
simulated sampling under the two designs from a 
a large artificial population with 1,000 stands in 
each of seven age classes, one study variable, and 
two auxiliary variables. A case study with an actual 
population was desired, but we have not been able 
to obtain data from a forest inventory with a study 
variable known for all live trees in a large number 
of stands.

Population and stand level results with OPS and 
QSYST, and the proposed new method for estimat-
ing the among-stand-variance, are compared to 
results with three variants of a two-stage sampling 
design with a direct (here: empirical best linear un-
biased or EBLUP) estimation of the among-stand 
variance (Pinheiro, Bates 2000).

MATERIAL AND METHODS

Artificial population. Our artificial population 
is cast as a mid-sized forest estate of black spruce, 
the most common tree species in Canada. We as-
sume a stand-oriented approach to forest manage-
ment. That is reliable estimates for a population 
and stand means of key forest resources are re-
quired along with statistics of the uncertainty asso-
ciated in these estimates, and their 95% confidence 
intervals. The artificial population should be large 
enough to allow simulated sampling with realistic 
sampling intensities for forest management inven-
tories. Moreover, the artificial population should 
have an age-class structure and, for our purpose of 
demonstration, also include a practically important 
among-stand variance within each age class.

The artificial population (forest) covers an area of 
10 100 ha, and has 17.9 million trees stratified to 
seven approximately equal area 20-year age classes 
and 1 000 stands in each age class. The stand sizes 
were chosen to emulate private forest holdings in 
eastern Canada and in much of Europe. That is, an 
average size of 1.4 ha and a standard deviation of 
0.6 ha. 

To enable simulated sampling under some cho-
sen design, each stand is tessellated into  a number 
of fixed area units with an area equal to the area of 
a field sample plot (here 200 m2). 
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The study variable (Y) is stem wood volume den-
sity (VOL m3·ha–1), and the two remotely sensed 
auxiliaries (details to follow) are cast as the canopy 
height (CHT m) of first-return pulses from an air-
borne laser scanner, and the within-plot standard 
deviation of the first-returns (sCHT m). The two 
auxiliaries are often found to have good predictive 
powers of stem volume density (Magnussen et al. 
2015). The limitation to two auxiliaries is argued on 
grounds of a parsimoneous model.

The trend over age in mean stem diameter 
(mDBH), expected height (EHT), and basal area 
density (BA m2·ha–1) follows Plonski’s yield table 
(Plonski, 1960) for black spruce (Picea mariana 
(Mill.) BSP) for a medium productivity level site in-
dex (SI) of 18 m at age 100. 

Next we generated 1 000 stand templates for each 
of the seven age classes (acl = 1, …, 7). Each template 
was populated in four steps:

(1) An age was assigned to a template in age class 
acl by a random draw from a discrete uniform dis-
tribution with lower and upper limits of 20 (acl-1) 
and 20 acl. 

(2) A SI was assigned by a random draw on the 
interval 17.1–18.9 m using a generalized beta dis-
tribution (Fazar 1959; Li et al. 2002) with a mean of 
18 and a standard deviation of 0.49.

(3) A mean DBH (mDBH cm) and a basal area 
(BA m2·ha–1) were determined from functions of SI 
and age (Payandeh 1991) after slight modifications 
to ensure a monotone trend over the age interval 
15–154 years. 

(4) An expected stem density (ESTEMS 
stems·m–2) was obtained from BA and mDBH, 
and multiplied by a correction factor to ensure a 
non-increasing trend over age. The 7 000 stand 
templates were then converted to virtual stands 
with randomly chosen areas (SA) restricted to a 
multiple of 200 m2. All stand areas are between 
0.4 ha and 2.6 ha with a mean of 1.4 ha. Thus 
the average number of 200 m2 units in a stand is 
70 (min = 20, max = 130). The number of stems 
(STEMS) in a stand was decided by a random 
draw from a Poisson distribution with mean 
SA×ESTEMS and truncated at 0.75×SA×ESTEMS 
and 1.33×SA×ESTEMS. Our choice of truncation 
points controls the coefficient of variation in the 
number of stems in a stand. Specifically, the ap-
proximate coefficient of variation in stem num-
bers in the seven age-classes is: 0.08, 0.10, 0.11, 
0.12, 0.13, 0.13, and 0.13. 

To generate a within stand variation in stem den-
sity, the STEMS in a stand with an area composed 
of np × 200 m2 units were distributed to the units 
according to a set of random proportions. The np 
random proportions were obtained from a Dirich-
let distribution with all np parameters equal to one 
(Darroch, Ratcliff 1971). Thus the expected propor-
tion of STEMS in a unit is np

1–   with a variance of 
(np – 1)(1 + np)–1 × np

2–    which declines in np. To wit, 
the standard deviation with np = 30 is 0.032, 0.014 
with np = 70, and 0.008 with np = 130. The number 
of stems in the np units was hereafter computed as 
the rounded value of the product of STEMS and the 
randomly drawn proportions. 

To populate the 17.9 million stems with values of 
DBH, tree height (HT m), and total stem volume 
(VOL m3), we first generated stand specific models 
for the distribution of DBH. We chose a three pa-
rameter Weibull distribution. A model often used 
for this purpose (for examples, Bailey, Dell 1973; 
Magnussen 1986; Cao 2004). The stand specific 
parameters of this distribution was obtained by 
the method of moments from the known value of 
mDBH, assuming a coefficient of variation of 33%, 
and equating the lower limit to the 1/STEMS quan-
tile of student’s t-distribution with mean mDBH, 
standard deviation of 0.33 × mDBH, and STEMS 
degrees of freedom. The maximum DBH value in 
a stand was equated to the 99-percentile of the as-
sumed Weibull distribution. The fitted Weibull dis-
tribution was then used to draw individual stem 
values of DBH and HT from a data-base of 10 000 
such pairs (see next) with probability proportional 
to the DBH values predicated by the Weibull dis-
tribution. Volume values were obtained from a 
volume equation (see next) and the drawn values 
of DBH and HT. Additional stand effects (beyond 
those arising from SI, age, and STEMS) were added 
by multiplying each HT-value in a stand  by (1+Δ 
HT) with Δ representing a random draw from a 
uniform distribution on the interval [–0.05, 0.05], 
and by multiplying each VOL value by (1+δ VOL) 
with δ representing a random draw from a uniform 
distribution on the interval [–0.07, 0.07].

The data-base with 10 000 paired values of DBH 
and HT was constructed from 785 felled black 
spruce trees collected across its range in Canada 
(Macleod 1978); the largest data set available for this 
species. The tree data include a measured height 
(HT), a stem diameter at a reference level of 1.3 m 
above ground (DBH cm), and a total stem volume 
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(VOL m3) computed via Smalian’s formula applied 
to 2-m stem sections (Spurr 1952). The average tree 
size was 18.9 cm for DBH with a standard deviation 
(sdev) of 8.6 cm, and a range from 2 to 54 cm. Tree 
heights varied from 1.6 m to 25.5 m with an average 
of 14.9 m, and a sdev of 4.4 m. Total stem volume 
varied from 0.0017 m3 to 2.397 m3 with a mean of 
0.272 m3 and a sdev of 0.282 m3.

The 785 paired values of DBH and HT were bulked 
to 10 000 pairs by random draws from a bivariate 
Copula distribution of DBH and HT fitted to data by 
methods of maximum likelihood (Fischer 2010). The 
best fit marginal distribution of DBH was a Johnson’s 
SL distribution (Rennolls, Wang 2005) with param-
eters shape γ = 28.7382, shape δ = 3.77002, location μ 
= –13.2, and scale σ = 63,318.7. The best fit marginal 
distribution for HT was a truncated exponential gam-
ma-distribution (Dubey 1970) with parameters shape 
κ = 1.34274, scale φ = 4.71605, location μ = 15.2022, 
and a left truncation at 1.3 m. A Clayton kernel with a 
parameter value of 0.31 was used to tie the two mar-
ginal distributions together to a bivariate distribution. 
The fitted bivariate cumulative distribution function 
of DBH and HT is in Figure 1. For each drawn pair of 
DBH and HT, the value of VOL came from applica-
tion of Evert’s volume equation (Evert 1983) that was 
fitted using the data from the 785 felled trees.

Simulated auxiliary variables. Two auxiliary vari-
ables are used in unit-level (i.e. area based) model pre-
dictions of mVOL for every unit in the artificial pop-
ulation. The two auxiliaries are intended to emulate 
two LiDAR metrics of first-return echoes obtained 
wall-to-wall from an airborne laser scanner (Sexton 
et al. 2009; Næsset 2014). The first auxiliary is cast as 

the mean canopy height (mCHT) (Sexton et al. 2009). 
A CHT value was generated for each stem in the arti-
ficial population. Specifically. CHT = HT – 1.5 + rHT 
where rHT is a uniform distributed random variable 
on the interval –0.5 m to 0.5 m. All generated values 
of CHT were subsequently censored to the interval 
[1.3, 26.0] m and averaged to mCHT for each 200 m2 
unit. The second auxiliary sCHT is the standard de-
viation in CHT in a 200 m2 unit. 

Properties of the artificial population. Table 1 
provides summary statistics by age class and for age 
class one to seven combined. 

The among-stand variances in Table 1, expressed 
as a coefficient of variation (CV, i.e. the stratum 
among-stand standard deviation divided by the 
stratum mean), varied from 12% in age class one to 
16% in age class seven, and was 17% over all classes. 
The among-stand variance in mCHT was greatest 
in age class one with a CV of 36%. In age class two 
to seven, the CV dropped from 10% to 4%. In sCHT 
the CV was 32% for age class one and approximate-
ly 10% in age class two to seven.

The coefficient of variation in the age class spe-
cific unit-level distributions of mVOL m3·ha–1 was 
highest in age class one (58%), and it then tapered 
off to approximately 30% in the older classes. For 
mCHT the CV was 38% in age class one, 11% in 
age class two, and then dropping to 7% and 5% in 
age classes three to seven. Newton and Amponsah 
(2007) noted a comparable decline.

Age class specific distributions of mVOL m3·ha–1 
were right-skewed. The skewness coefficient 
dropped from 0.76 to 0.52 over the first three age 
classes, and then hovered at this level in the four 
older classes. Skewness was unimportant in mCHT, 
and between 0.15 and 0.23 in sCHT.

Sampling designs. We test the proposed new 
method for obtaining an estimate of the among-stand 
variance in two efficient sampling designs that stratify 
sampling locations by an auxiliary variable (mCHT), 
but do not otherwise allow a direct estimation of this 
variance. Results with the new method are compared 
to results from two-stage sampling designs (2ST) 
that allow a direct computation of the among-stand 
variance. All sampling is by age-class, and results are 
provided for each age class, and for the population. 
Specifically, the sampling designs for testing the new 
method are stratified one-per stratum (OPS) and 
stratified quasi systematic sampling (QSYST), neither 
has been explored for forest inventories, and in the 
opinion of the authors, they deserve attention. The 

Figure 1. The cumulative bivariate distribution function 
of DBH and HT
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sampling designs are detailed in the next section. 
Three population level sampling intensities (MIN, 
MED, and MAX) assumed compatible with forest 

enterprise inventories are executed. We have n = 542 
units for MIN viz. one unit per 18.6 ha forest, n = 1 076 
for MED viz. one per 9.4 ha, and n = 2 146 for MAX 
viz. one per 4.7 ha. Age class specific sample sizes are 
in Table 2. They were determined by Neyman alloca-
tion (Snedecor, Cochran 1971) with proportionality 
to the product of stratum area and the known stan-
dard deviation of mCHT in each age-class.

Stratified one-per-stratum sampling

In the one-per-stratum (OPS) sampling design (Co-
chran 1977), age-class specific sample sizes (nh) are 
equal to those of the 2ST variants MIN, MED, and 
MAX in Table 2. To implement OPS,  each age-class 
is stratified into nh strata by the remotely sensed 
auxiliary variable with the strongest correlation to 
mVOL i.e. mCHT. We chose an efficient stratifica-
tion by the CUM√f (x) rule of Dalenius and Hodg-
es (1959), and detailed in Cochran (1977). Hence, 
within an age class, the OPS sample distribution of 
mCHT values is balanced against the distribution of 
mCHT in an age class.

Quasi systematic sampling

In QSYST the age class specific sample sizes (nh) 
are equal to the 2ST variants MIN, MED, and MAX 
in Table 2. The objective is to obtain, for each age 

Table 1. Summary statistics from the artificial black spruce forest

Age class
1 2 3 4 5 6 7 1–7

Area (ha) 1 452 1 429 1 434 1 483 1 431 1 463 1 429 10 100
No. of stands 1 000 1 000 1 000 1 000 1 000 1 000 1 000 7 000
Avg. stand area 1.5 1.4 1.4 1.5 1.4 1.5 1.4 1.4
mVOL (m3·ha–1)
Mean 57 172 246 292 326 354 377 261
sdev 33 52 71 87 100 109 118 136
Skewness 0.76 0.66 0.52 0.49 0.53 0.51 0.55 0.31
Among-stand variance 47 396 1 038 1 648 2 299 2 870 3 482 1 889
mCHT (m)
Mean 5.3 10.6 12.9 14.0 14.6 14.8 15.1 12.5
sdev 2.0 1.2 0.9 0.9 0.8 0.8 0.8 3.5
Skewness 0.12 –0.02 0.05 0.01 –0.01 –0.03 –0.03 –1.4
Among-stand variance 3.6 1.2 0.5 0.3 0.3 0.3 0.3 11.6
sCHT (m)
Mean 2.2 3.4 3.4 3.3 3.2 3.1 3.1 3.1
sdev 0.7 0.5 0.5 0.6 0.6 0.5 0.5 0.7
Skewness 0.21 0.23 0.15 0.15 0.19 0.18 0.22 0.43
Among-stand variance 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.3
Correlation (mVOL,mCHT) 0.91 0.63 0.43 0.36 0.34 0.32 0.31 0.78

mVOL – model wood volume density, mCHT – model auxiliary variable, sCHT – standard deviation of the first-returns

Table 2. Two-stage sampling design (2ST) sample sizes 
(units) in 2ST variants MIN, MED, MAX, and number of 
selected stands in MIN, MED, and MAX variants 2ST100, 
2ST60, and 2ST30

Age class
Sample Size (units)

2ST
MIN 30 44 68 86 96 104 114 542
MED 60 86 136 170 190 208 226 1076
MAX 120 170 270 340 380 416 450 2 146

Number of stands with two sample units
2ST100
MIN 15 22 34 43 48 52 57 271
MED 30 43 68 85 95 104 113 538
MAX 60 85 135 170 190 208 225 1 073
2ST60
MIN 10 14 18 24 30 34 38 168
MED 20 30 44 50 56 62 68 330
MAX 36 50 80 102 114 124 134 640
2ST30
MIN 5 7 9 12 15 17 19 84
MED 10 15 22 25 28 31 34 165
MAX 18 25 40 51 57 62 67 320



138

Original Paper	 Journal of Forest Science, 66, 2020 (4): 133–149

https://doi.org/10.17221/141/2019-JFS

class, a uniform sample distribution of the auxiliary 
variable with the strongest correlation to mVOL, i.e. 
mCHT. We followed the sampling protocol in Wil-
helm et al. (2017). Selections are initially carried out 
with an ancillery variable z uniformly distributed on 
the interval [0; 1]. The within age class sample se-
lection was hereafter obtained as per Equation 3 in 
Wilhelm et al. (2017) for a binomial renewal process 
and a tuning parameter of r = 2.5. The conversion 
from selected z-values to mCHT, was implemented 
via a nearest neighbour search in paired values of 
(z(mCHT), mCHT) where z(mCHT) is the transform 
of mCHT to the interval [0; 1]. Anderson-Darling 
tests (Anderson, Darling 1952) of a uniform distri-
bution of drawn z-values on the interval [0, 1] con-
firmed the workings of the algorithm. 

According to theory, a larger r-value would have 
been preferred, since sampling becomes strictly 
systematic as r goes to infinity. However, for the 
sample sizes in this study, we ran into numerical 
accuracy issues and excessive computation times 
when attempting to compute the joint sampling 
densities in (9) with r values greater than 10. Our 
choice of r is therefore a compromise between as-
ymptotics, and the risk of selecting an age class unit 
more than once – which increases as r decreases. 
With r = 2.5 we encountered no duplicates in a total 
of 2 100 randomly drawn samples.

Two-stage sampling designs

In stage one of the two-stage benchmark designs, 
mh stands are randomly selected (without replace-
ment, wor) in age class h (h = 1, …, 7), and in stage 
two, either one or two units are selected at random 
(wor) from each of the mh stands selected in stage 
one (Cochran 1977). We included three variants of 
two-stage sampling. In the variant called 2ST100, 
two units are selected from each selected stand; in 
the variant called 2ST60, two units are selected in 
approximately 60% of the mh stands, and one unit is 
selected in each of the remaining sampled stands; in 
the third variant called 2ST30, two units are selected 
in approximately 30% of the selected stands, and 
one unit from each of the remaining. The mh2 (mh1) 
stands from which to select two (one) units were se-
lected at random (wor) from the set of mh stands se-
lected in stage one. Table 2 provides details.

In the simulated sampling (and in all estimators), 
sample data consist of unit (plot) means mVOL 
m3·ha–1 of VOL and mCHT, and the within-plot 
standard deviation sCHT m of CHT.

Inference. We pursue design-based inference  
about the population mean, age class means, and 
model-based inference about stand means of mVOL.  
In each case, we seek to quantify the uncertainty 
(standard error) in an estimated mean, and we 
compute a nominal 95% confidence interval for the 
mean. The proposed new method for estimation of 
the among-stand-variance is only relevant for the 
stand-level inference. However, since OPS, QSYST, 
and even 2ST are not common sampling designs in 
enterprise forest inventories, we do include popula-
tion and age class results in our exposé. Readers in-
terested only in the stand-level inference may skip 
details of estimators used for population and age 
class level inference.

All levels of inference employ a linear assisting 
model stating an assumed (not necessarily true) 
relationship between mVOL and the two remotely 
sensed auxiliaries mCHT and sCHT. To wit (Eq. 1):

1 2 ,  1, , ,  1, ,7hi h hi h hi hi hy mCHT SCHT i N h         	 (1) 
1 2 ,  1, , ,  1, ,7hi h hi h hi hi hy mCHT SCHT i N h        

where yhi the value of mVOL m3·ha–1
 in the ith unit 

in age class h, β1h and β2h are regression coefficients 
to be estimated from sample data, and εhi is an error 
assumed normally distributed with a mean of zero 
and an assumed variance σhi

2=exp(α0+α1 mCHThi). 
Note, the error term in (1) includes a stand effect. 
In estimators for the two-stage designs, the error 
term is decomposed to a term linked to the stand 
effect, and a term linked to the within stand error 
(details are in the subsections for the 2ST designs). 
With our proposed new method we achieve, as de-
tailed below, a decomposition via a modified analy-
sis of variance of the error term in Eq. (1).

Estimators for population and age class infer-
ence. Estimators of age class and population  means 
of y and their uncertainties require predictions  of  
and empirical residuals  for all units in a sample (h 
= 1,…,7, i=1,…., nh). Predictions came from (Eq. 2):

1 2
ˆ ˆ ,  1, , ,  1, ,ˆ 7hi h hi h hi hy mCHT sCHT i N h       	  (2)

where 1 2
ˆ ˆ ,  1, , ,  1, ,ˆ 7hi h hi h hi hy mCHT sCHT i N h      ,1 2

ˆ ˆ ,  1, , ,  1, ,ˆ 7hi h hi h hi hy mCHT sCHT i N h       are design-consistent regression 
coefficients estimated via weighted least squares 
regression (Särndal et al. 1992). Let whk denote the 
weight assigned to the kth unit in age class h. Under 
a 2ST design whk is a sample inclusion probability, 
under OPS a CUM√f (x) stratum weight, and under 
QSYST a sampling density (Wilhelm et al. 2017). 
Specifically (Eq. 3):

 s
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ˆ ˆˆ exphk hk h h hkmCHT mCHTσ θ θ= + 		 was estimated by 

a four-step method (Harvey 1976). In step one, 
ordinary least squares (OLS) estimates of β1h, β2h 
are obtained; in step two, OLS estimates of ( ) ( )2

0 1
ˆ ˆˆ exphk hk h h hkmCHT mCHTσ θ θ= + 		,( ) ( )2
0 1
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are obtained via a linear regression with the log of 
squared residuals from step one as the dependent 
variable; in step 3 a bias correction is added to ( ) ( )2

0 1
ˆ ˆˆ exphk hk h h hkmCHT mCHTσ θ θ= + 		;  

and in step four, generalized least squares estimates 
of β1h, β2h are obtained with the fitted variance 
function.

The regression estimator of  an age class mean of 
y was hereafter (Särndal et al. 1992), Equation 4:
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Estimates of the population mean was obtained as 
the weighted sums of age class means (Cochran 1977).

Under the OPS design, the estimator of the vari-
ance in the mean of y in age class h is (Breidt et al. 
2016), Equation 5:
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where Whk is the area proportion of age class h 
units in the kth CUM√f (x) stratum (Breidt et al. 
2016, Eq. (6)), dhk (hl) is a kernel weight for the 
sample data pair of the kth and lth unit in the kth 
CUM√f (x) stratum in age class h, and is a normal-
izing constant. We chose a triangular kernel (K(x) 
= (1 – |x|) if |x| ≤ 1 and 0 elsewhere), Izenman 1991 
based on its root mean squared error in a leave-
one-out cross-validation. The weights dhk (hl) in 
(Eq. 5) comes from Equation 6:

 
1

ˆ

ˆ
h

hk hl

h
hk

n hk hl
l

h

mCHT mCHTK
d hl

mCHT mCHTK





 
 
 
 
 
 



	    
(6)

And the bias-correction cdh from Equation 7:
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The kernel bandwidth 𝜔𝜔"	 in (Eq. 6) minimized the 
mean squared error of the kernel-weighted sample 
mean of mCHT in age class h (h = 1, …, 7). 

The approximate variance of 𝑦𝑦" 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 	 is (Wil-
helm et al. 2017) (Equation 8):
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with 𝜋𝜋"# = 𝜋𝜋"% = 𝑛𝑛"	 denoting a sampling density (Cordy 
1993) whereby 𝜋𝜋"# = 𝜋𝜋"% = 𝑛𝑛"	, and the joint sam-
pling density 𝜋𝜋"# = 𝜋𝜋"% = 𝑛𝑛"	, 𝜋𝜋"# = 𝜋𝜋"% = 𝑛𝑛"	 is a function of the absolute 
difference in the draws of the scaled random vari-
able z (see sampling designs). For hk = hl we get  
𝜋𝜋"#,"% = 1 − 𝑛𝑛"* 	 and for hk ≠ hl (Equation 9):
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where Γ(∙) is the gamma function. As expected 
(Wilhelm et al. 2017), we have 𝜋𝜋"#,"% ≅	 nh (nh–1) for 
nearly all pairs of zhk and zhl.

The variance of an age class mean obtained under 
a two-stage sampling design was estimated as per 
4.3.14 in Särndal et al. (1992) and is not detailed here.

The variance of a population mean was in all cas-
es obtained as the weighted average of the age class 
variances (Cochran 1977).

Stand-level inference. With the estimated age 
class specific regression coefficients, a regression-
synthetic estimate of the mean of mVOL m3·ha–1 
in a stand in age class h(     
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stands. The estimated stand mean is simply the 
mean of unit-level predictions of y computed for all 
Nhst units in a stand. The variance estimator of      
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is in Equation 10:

	

(10)

 

where (XXt)–1 is the inverse of the 2 × 2 matrix of 
cross product sums of mCHThk and sCHThk in the 
age class from which the regression coefficients were 
derived, 
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 (see details in next section) is an esti-
mate of the among-stand variance in age class h, and 
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tXX is the predicted residual variance ap-
plicable to unit k with a mean canopy height mCHThk.  
To illlustrate the importance of the among-stand vari-
ance for the coverage of a nominal 95% confidence in-
terval, the variance in (Eq. 10) was computed twice, 

1 000
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first with 
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 .
A nominal normal 95% confidence interval 

(CI95) for the true stand mean was obtained from 
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tXX by standard techniques (Casella, 
Berger 2002). As for the variance in Equation 11, 
two confidence intervals were computed. 

With the 2ST designs, the among-stand vari-
ance 
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tXX

 was computed via restricted maximum 
likelihood of a mixed linear model with stand as 
random effects and mCHT and sCHT as covari-
ates (Pinheiro, Bates 2000). For OPS and QSYST, 
this method is not feasible since it is rare to have 
more than one sampled unit in a stand. For these 
designs the among-stand variance is obtained with 
the proposed new method.

The tenent behind our new method is is that 
stands with a similar mCHT value also have similar 
(random) stand effects. The same tenet underpins 
the traditional estimation of variance in OPS with 
collapsed strata (Snedecor, Cochran 1971). There-
fore, if we cluster the empirical residuals (cf Eq. 
1) based on their mCHT values, we should ideally 
expect, that the stand effects would more similar 
within a cluster than if clustered by a random as-
signments. A one-way analysis of variance (ANO-
VA) with the clustered empirical residuals would, 
ideally, provide us with a reasonable proxy to the 
desired among-stand variance. The key question 
as to how many clusters (Fraley, Raftery 1998) can 
not be answered by theory. Preliminary investiga-
tions suggested that more than one cluster size 
would be needed to obtain robust estimates, and 
also that data-driven modifications to the analysis 
of variance would be needed. Details are next.

Specifically, we propose the following estimator 
of the among-stand variance

     2 1 2MSE –  MSE )/ ,  ,ˆhst clu clu w cluDES n n DES OPS QSYST    	 (11) 

     2 1 2MSE –  MSE )/ ,  ,ˆhst clu clu w cluDES n n DES OPS QSYST   

where nclu is the number of empirical residuals 
in a cluster, MSEw is the ANOVA within-cluster 
mean squared residual error, and MSEclu is the 
ANOVA among-cluster mean squared residual er-
ror. The parameters α1 and α2 are to be obtained 
by data-driven simulations (see next). Here we use 
α1 = 1 and α2 = 2.4 (see next for details). The esti-
mator in (11) was derived for cluster sizes (nclu) of  
2, 3, 4, and 5 and then averaged to a final estimate. 
We found that the average of the four estimates of 

an among-stand variance bestowed robustness to 
the estimated variance.

In applications, the parameter values for α1 and α2 
must be obtained from simulations with standard bi-
variate Gaussian variables, whereby the second is a sum 
of two zero-mean independent Gaussian terms emu-
lating random zero-mean stand effects with a variance 
σstand

2 , and a residual errors with a mean of zero and a 
variance of 1 – σstand

2 . The bivariate correlation was, in 
our simulations, fixed at r = 0.50, but values between 
0.1 and 0.9 will also work. Specifically, for σstand

2 = 0.05, 
0.10, …, 0.30, and sample sizes = 50, 100, …, 500, we 
split the sorted (by the first Gaussian variable) sample 
into clusters of size 2, 3, 4, or 5 and obtained MSEclu 
and MSEw by standard ANOVA techiques (Snede-
cor, Cochran 1971) for each combination of σstand

2 ,  
cluster size, and sample size. This process was re-
peated 100 times. With σstand

2  known, we estimated  
α1 and α2 by minimizing the sum of squared differ-
ences over the 24, paired values of the variances on 
the right and left hand side of (Eq. 11). The pseudo R2 
(Mbachu et al. 2012) between the actual among-stand 
variance and the estimated variance was 0.48 in our 
24 000 simulated cases. 

We used Levene’s test of equal variances (Levene, 
1960) to compare estimates of the among-stand 
variance and the distribution of p-values from 
these test were compared to a uniform distribution 
on the closed interval [0; 1] as expected under the 
null hypothesis (Anderson, Darling 1952).

Performance criteria. The sampling designs 
are evaluated in terms of bias in an estimate of a 
mean, empirical standard errors (ESE) of a mean, 
the correspondence between an empirical and an 
analytical standard error (ASE), and the coverage 
of nominal 95% confidence intervals.

Bias was computed as the difference between an es-
timated mean and the actual value in percent of the 
actual mean. This bias is labelled BIAS%. An ESE is 
computed as the standard deviation of the 100 esti-
mates of a mean for a given combination of design × 
sample size divided by √100. The efficiency of a design 
is measured by its ESE. The lower the ESE, the higher 
the efficiency. ASE is the squared root of the average 
estimated variance in an estimate of a mean.

RESULTS

Age class and population inference
The main objective of this section is to illustrate 

the efficency of the OPS and QSYST sampling de-
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signs. Readers mainly interested in our new meth-
od for estimating an among stand variance from 
designs that do not allow a direct estimation may 
skip the remainder of this section.

The relative bias in an estimates of an age class 
mean of mVOL m3·ha–1 is summarized in Table 3. 
In age class three to seven, the BIAS% was similar 
across the five designs and sample sizes (MIN, MED, 
MAX). In age class one and two, BIAS% was more 
variable. The higher relative variability and skewness 
in mVOL m3·ha–1 in the first two age classes points 
to the challenge of obtaining accurate estimates 
with our sample sizes in presence of skewness. We 
learned that approximately 200 replications of a 
sampling design would be needed to increase the 
statistical power of the t-tests to declare a bias of 1% 
(or greater) as statistically significant at the 5% level.

Empirical standard errors in the estimates of 
the age class means of mVOL m3·ha–1 (obtained 
from the 100 replications of a design × sample 
size combination) obtained with OPS and QSYST 
were approximately 40% lower than with the best 
two-stage variant 2ST30 (Table 4). The two-stage 
variant 2ST100 was, as expected, the least efficient. 
Over all settings, the empirical standard errors 
with 2ST100 were 13% greater than with 2ST30. 
The higher efficiency of OPS and QSYST is upheld 
across age classes and sample sizes (MIN, MED, 

MIN). Differences between the OPS and QSYST 
designs in empirical standard errors did not indi-
cate that one was more efficient than the other.

The mean of the analytical estimates of the standard 
error under the OPS and QSYST designs matched the 
empirical counterparts to within a few (2) percentage 
points, and the correlation between the two sets of 
estimates was strong (0.999). For the two-stage design 
2ST30, the correlation was somewhat weaker (0.91) 
but there was no apparent overall difference between 
the two error estimates. For 2ST60 and 2ST100, the 
correlation was even lower (0.85), with the mean ana-
lytical error trailing the empirical error by 5% to 12% 
across all age classes and sample size levels.

Coverage rates for OPS and QSYST were between 
89% and 98%. We failed to reject the null hypoth-
esis of a coverage of 95% for these two designs. The 
two-stage design variant 2ST30 achieved the best 
MA coverage with an average matching the nomi-
nal 95% level. With the 2ST60 variant the average 
coverage was 93% but only 90% with 2ST100. The 
minimum coverage (0.87) was with 2ST100 and a 
MIN sample size.

Stand-level inference
The assumed model in Eq. (1) is intended for pop-

ulation level inference. When used to obtain predic-
tions of stand means, we should expect that the dif-

Table 3. Relative bias (BIAS%) in estimates of mean volume (m3·ha–1) by sampling design and age class

Design Sample 
size

Age class
1 2 3 4 5 6 7 1–7

2ST100 MIN –0.22 –0.31 –0.17 0.14 0.27 –0.30 –0.16 –0.08
MED –0.91 0.52 –0.10 –0.27 0.45 –0.57 0.23 –0.18
MAX –0.85 –0.22 –0.17 –0.20 –0.01 –0.14 0.20 –0.09

2ST60 MIN –0.25 –0.13 –0.27 –0.15 0.01 –0.55 –0.09 –0.21
MED 0.05 –0.66 –0.58 –0.24 0.12 –0.44 –0.30 –0.30
MAX –0.98 –0.32 0.30 0.05 0.01 0.13 0.26 0.05

2ST30 MIN –0.18 –0.33 0.01 0.34 –0.02 0.10 –0.56 –0.19
MED –0.44 –0.20 –0.07 –0.49 0.02 0.02 –0.20 –0.16
MAX –0.74 0.11 –0.11 0.05 –0.03 0.04 –0.26 –0.07

OPS MIN 0.01 –0.50 0.24 –0.52 0.29 –0.46 0.32 –0.27
MED –0.66 0.11 0.15 0.34 0.46 –0.11 –0.30 0.01
MAX –0.80 0.17 0.10 0.00 0.13 –0.23 –0.14 –0.05

QSYST MIN –0.54 –0.91 –0.5 0.23 0.56 –0.07 –0.08 –0.04
MED –0.77 –0.11 0.05 –0.41 –0.28 0.05 0.18 –0.08
MAX –0.87 –0.27 –0.34 0.07 –0.05 –0.17 0.12 –0.10

BIAS% – (estimated – actual)/actual × 100%, in bold – bias with a significant (5% level or less) departure from 0% 
in a t-test of the null hypothesis of a zero bias, 2ST100, 60, 30 – two-stage sampling designs, OPS – one-per-stratum, 
QSYST – quasi systematic sampling design
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ference between an actual and a predicted mean (i.e. 
bias) can be important for some stands. Bias impacts 
coverage of nominal confidence intervals (Snedecor, 
Cochran 1971, Table 5). Here, an absolute bias of 
10% or less had only a weak impact on coverage of 

a nominal 95% confidence interval, but with greater 
absolute bias, an increase of one percentage point 
incurred a loss in coverage between 0.002 and 0.03. 
There was no apparent trend in this loss attributable 
to age class, sample size, or sampling design.

Table 4. Analytical (ASE) and empirical (ESE) estimates of standard error in an estimate of an age class mean of 
mVOL m3·ha–1 obtained under five designs and three levels of stratum sample sizes (MIN, MED, and MAX). Table 
entries are listed as ASE/ESE

Design Sample 
size

Age class
1 2 3 4 5 6 7 1–7

2ST100 MIN 3.0/4.1 6.9/7.8 8.3/11.4 9.5/11.8 10.3/11.5 10.9/13.1 11.5/13.9 8.6/10.5
MED 2.1/2.6 4.8/4.8 6.0/7.0 6.7/7.1 7.6/7.6 7.8/7.2 8.1/8.6 6.2/6.4
MAX 1.5/1.7 3.5/4.1 4.3/4.9 4.8/5.5 5.3/6.3 5.5/5.6 5.8/5.9 4.4/4.0

2ST60 MIN 2.9/3.3 7.1/8.0 8.9/9.1 10.0/9.9 11.1/11.5 11.5/12.7 11.9/13.9 9.1/9.8
MED 2.2/2.3 5.1/5.7 6.4/6.1 7.2/7.4 8.0/7.1 8.3/8.0 8.7/9.1 6.6/6.5
MAX 1.6/1.9 3.7/4.1 4.6/4.6 5.0/5.4 5.6/6.3 5.8/5.9 6.0/6.3 4.6/4.9

2ST30 MIN 3.2/3.3 6.9/7.2 8.9/9.0 9.7/10.4 10.9/10.7 11.1/12.0 11.9/13.4 8.9/9.4
MED 2.1/2.3 5.3/4.2 6.1/5.8 6.9/6.2 7.8/8.1 8.0/8.2 8.4/8.2 6.4/6.1
MAX 1.6/1.7 3.6/3.4 4.4/4.1 5.0/4.7 5.5/4.9 5.7/5.4 6.0/6.0 4.5/4.3

OPS MIN 2.9/2.7 6.6/6.5 8.2/7.8 9.2/8.3 10.3/9.9 10.9/12.1 11.1/11.0 8.4/8.3
MED 2.0/1.8 4.7/4.1 5.7/5.2 6.6/5.8 7.2/8.0 7.5/7.7 7.8/8.0 5.9/5.8
MAX 1.4/1.3 3.3/3.2 4.1/4.5 4.6/4.4 5.1/5.2 5.3/5.1 5.5/5.8 4.2/4.2

QSYST MIN 2.9/2.7 6.4/6.4 7.9/7.0 8.7/8.4 9.6/9.7 10.4/10.3 10.8/11.4 8.1/8.0
MED 2.0/2.0 4.6/4.7 5.4/5.8 6.2/6.2 7.0/6.7 7.1/6.8 7.6/7.3 5.7/5.6
MAX 1.4/1.5 3.2/3.1 4.0/3.8 4.4/4.8 4.9/4.8 5.1/5.0 5.2/4.6 4.0/3.9

2ST100, 60, 30 – two-stage sampling designs, OPS – one-per-stratum, QSYST – quasi systematic sampling design

Table 5. Coverage of estimates of 95% confidence intervals for the actual mean mVOL  m3·ha–1 (coverage is in percent 
of 100 direct estimated intervals which include the actual mean)

Design Sample 
size

Strata
1 2 3 4 5 6 7 1–7

2ST100 MIN 81 91 80 87 89 91 93 100
MED 85 96 89 93 94 96 95 100
MAX 91 88 91 87 89 96 94 100

2ST60 MIN 88 91 91 94 94 91 88 100
MED 90 93 98 95 98 97 94 100
MAX 89 90 95 94 92 96 93 100

2ST30 MIN 91 96 94 91 95 90 96 100
MED 91 97 95 97 95 94 95 100
MAX 93 97 95 97 94 96 96 100

OPS MIN 96 94 98 98 93 97 95 100
MED 96 96 94 97 92 96 96 100
MAX 98 92 91 99 91 96 95 100

QSYST MIN 89 91 97 95 94 93 91 100
MED 94 94 89 94 94 98 93 100
MAX 92 93 94 95 95 94 97 100

2ST100, 60, 30 – two-stage sampling designs, OPS – one-per-stratum, QSYST – quasi systematic sampling design
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For the two-stage designs, the median bias in a 
predicted stand mean was –1.5% with a standard 
deviation of 2 percentage points across age classes, 
sample size levels, and design variants (2ST100, 
2ST60, and 2ST30). Age class contributed most to 
the variation. Median bias for both OPS and QSYST 
was 0.0% with a standard deviation of 0.08% over 
age classes and sample size levels. Estimates of bias 
were seemingly independent of stand size (corre-
lation < 0.02). The bias results are summarized in 
Figure 2. To note is an absence of effects related to 
sampling designs.

Among-stand variance
Under the two-stage designs,  EBLUP estimates of 

the among-stand variance obtained from relatively 
small sample sizes (≤ 100) were, in general, greater 
than the actual variance and highly variable (Figure 3).  
This applies in particular to the first age class with 
the largest (positive) skewness in mVOL m3·ha–1. 
Under the two-stage designs, a minimum sample 
size of approximately 100 appears necessary to keep 
an absolute bias below 10%. Due to large standard 
errors, we failed to reject the null hypothesis (t-test) 
of equal bias in age class specific estimates from the 
three two-stage designs. However, over all age class-
es, and with the smallest (MIN) sample size level, the 
average bias of 23% in the estimates from 2ST30 was 
significantly higher than the bias of 11% and 12% in 
estimates from 2ST100 and 2ST60. Overall, an in-
crease in sample size of 1 unit lowered the bias by 
approximately 0.9 percentage points.

Under the OPS designs the retrieved estimates 
of the among-stand variance (with the modified 
analysis of variance) were, in age class two to seven, 
approximately 30% below the actual values. In age 

class one, however, the variance was overestimated 
by approximately 20%. The stronger skewness in 
this age class, and the stronger correlation between 
mVOL m3·ha–1 and mCHT creates a wider separa-
tion of the within age-class strata values of mCHT 
and, by extension, the residuals in mVOL m3·ha–1. 
These effects combine to generate an inflated es-
timate of variance. The small standard errors in 
retrieved estimates is a direct consequence of the 
averaging of the estimates obtained with 2, …, 5 
sorted residuals per cluster. Sample size level had 
no apparent effect on bias.

Retrieved among-stand variances obtained with 
the QSYST designs underestimated the actual vari-
ance by approximately 50% with no apparent effect 
of age class or sample size. As in the case of OPS, 
the standard error in a retrieved variance was much 
lower than with the 2ST designs.

Coverage of confidence intervals for a stand mean
Coverage of nominal 95% confidence intervals for 

a stand mean was significantly improved by a pro-
vision of an estimate of the among-stand variance. 
Without such an estimate, the overall achieved 
coverage was 0.66 for the two-stage designs; with 
only minor (0.01) differences among the variants 
2ST100, 2ST60, and 2ST30, and sample size levels. 
With an estimate of the among-stand variance, the 
coverage increased to 0.82 (2ST100), 0.87 (2ST60), 
and 0.90 (2ST30). The graphics in Figure 4 empha-
size the improvements in coverage with the provi-
sion of an estimate of the among-stand variance.

With the OPS design, coverage was dependent on 
sample size level (cf. Figure 3). Without a retrieved 
among-stand variance the coverage decreased 
from 0.82 to 0.68 as sample size level increased 

Figure 2. Quantile plot of rela-
tive bias in a predicted stand 
mean (bias is in percent of the 
actual mean). The error bars 
represent the interval of ± 
one standard deviation of the 
quantile mean across age classes 
and sample size levels. In case 
of 2ST, the standard deviation 
includes variation over the 
design variants 2ST100, 2ST60, 
and 2ST30
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from MIN to MAX. The explanation comes from 
the faster decline in an estimate of errors in the re-
gression coefficients with an increase in sample size 
compared to a smaller (if any) decline in the bias in 

a predicted stand mean. With a retrieved among-
stand variance, the OPS coverage was improved, 
and it now increased with sample size level; from 
0.90 (MIN), to 0.92 (MED), and to 0.93 (MAX).

Figure 3. Relative difference between estimates and observations of the among-stand variance by design and sample size 
(The error bars represent the interval of ± one standard error of a relative difference in age class 1, 3, 5, and 7)

Figure 4. Coverage of 7 000 nominal 95% confidence intervals for a stand mean by design and sample size levels (black 
horizontal bar indicates the coverage without an estimate of the among-stand variance, gray bar indicates the improve-
ment in coverage due to the provision of an estimate of the among-stand variance, the target coverage of 0.95 is indicated), 
2ST – two-stage sampling design, OPS – one-per-stratum, QSYST – quasi systematic sampling design
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Coverage obtained under the QSYST design was 
more similar to results from the two-stage designs 
than to results from OPS (Figure 4). Without a re-
trieved among-stand variance, the coverage de-
creased from 0.64 to 0.59 as sample size increased 
from MIN to MAX. With a retrieved among-stand 
variance the QSYST coverage increased with sam-
ple size levels from 0.82 (MIN), to 0.86 (MED), and 
0.89 (MAX).

Without an estimate of the among-stand variance, 
the coverage in age class one was, for all designs, ap-
proximately 0.20 lower than in older classes. Yet with 
estimates of the among-stand variance, the coverage 
became at par with coverage in older classes.

DISCUSSION

In forest enterprises with stand-oriented forest 
management practices, the provision of credible 
stand level predictions of forest resource attributes 
like stem wood volume is important. With the ad-
vancements in airborne laser scanning techniques 
and data processing (Corona, Fattorini 2008; Mel-
ville et al. 2015; Saarela et al. 2015), optical sensors 
(Holmström, Fransson 2003; Koch 2011), and un-
manned airborne vehicles (Puliti et al. 2017), it is 
now possible to generate wall-to-wall model-based 
predictions of desired attribute values from a rela-
tively small number of field sample plots selected ac-
cording to a probability sampling design (Fattorini 
et al. 2009; Grafström, Ringvall 2013; Corona, 2016; 
Grafström et al. 2017).

From a modelling and efficiency perspective, it 
is advantageous to distribute the forest inventory 
samples uniformly across the population of interest 
(Mostafa, Ahmad 2017; Pagliarella et al. 2018; Räty 
et al. 2018) or to emulate the population distribu-
tion of one or more auxiliary variables (Grafström, 
Ringvall 2013; Grafström et al. 2017). These and oth-
er sampling approaches are becoming popular, and 
have in many instances replaced stand-level inven-
tories (Duplat, Perrotte 1981; Mäkelä, Pekkarinen 
2004; Muukkonen, Heiskanen 2007; Nothdurft et al. 
2009; Kangas et al. 2018).

These advances have promoted accurate popu-
lation-level estimates of forest resource attributes. 
However, these designs will be deficient for stand-
level inference in forests with significant stand ef-
fects, if the design does not allow a direct estima-
tion of the among-stand variance (Breidenbach et 

al. 2016; Magnussen, Breidenbach 2017). The defi-
ciency is centered on poor estimates of the uncer-
tainty in a predicted stand mean (Magnussen 2018). 
Deficient unless, of course, a reasonable estimate of 
the among-stand variance can be retrieved by other 
means (Breidenbach et al. 2016; Magnussen, Bre-
idenbach 2017).

Estimators of an among-stand variance require 
at least two samples collected within a minimum 
number of stands. If there are stand effects, then it 
is well known that allocating more than one sample 
to a stand will lower the population level efficiency 
of a sampling design (Kleinn 1994; Tam 1995). We 
saw this in the lower efficiency of the two stage de-
signs. Their efficiency declined – for a given overall 
sample size – with a decline in the number of stands 
in the sample. From a standpoint of population-level 
efficiency, sampling should be limited to at most two 
units per stand. We saw that it may be necessary to 
allocate two sample units to a relatively large num-
ber of stands (approx. 30) in order to get reasonably 
accurate estimates of the among-stand variance by 
traditional methods (e.g. EBLUP). For a given sam-
ple size, the bias in the among-stand variance es-
timate increased with a decrease in the number of 
stands with two sample units. Without a reasonable 
anticipated value of the among-stand variance com-
ponent, it will not be possible to give more specific 
recommendations regarding the necessary number 
of stands to sample with two units (Maas, Hox 2005). 
Our results suggest that a two-stage design with two 
samples in each of approximately 30 stands can yield 
an age class (stratum) estimate of the among stand 
variance with an absolute bias of at most 10%.

Forest management may be better served by a 
combination of a sampling design that optimizes ef-
ficiency at the population or stratum level combined, 
and a method for retrieving the among-stand vari-
ance from data with – as a rule – one observation 
per stand represented in the sample. Our example 
with OPS and QSYST confirmed that these designs 
are not only more efficient for population (stratum) 
level inference, but they also generated analytical 
estimates of standard errors that were closer to the 
empirical (observed) estimates than the three vari-
ants of a two-stage design. Consequently, achieved 
population-level coverages were also better with 
OPS and QSYST than with the three 2ST variants.

The proposed method, to retrieve an among-
stand variance from sample data with at most one 
observation per stand, typically underestimated the 
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among-stand variance by 30% to 50%. Nonetheless, 
the population and stand level coverage of nomi-
nal 95% confidence intervals with OPS was overall 
best, and the coverage with QSYST was at par with 
the coverage achieved with the three variants of a 
two-stage design. This may be serendipity specif-
ic for the studied population. Further research is 
needed to gauge how general this result is.

Our results also confirmed that merely a rough ap-
proximation of an among-stand variance is needed 
to significantly improve upon confidence intervals 
computed with the stand effects included in an es-
timate of the residual variance (Magnussen 2018). 
The proposed method is tailored to sampling de-
signs that selects an ordered sample of one or more 
auxiliary variables where it is reasonable to assume 
that hidden random stand effects are sorted along 
a parallel gradient. The two parameters α1 and α2 
required by our method will have to be estimated 
anew in each application. We used simulations 
with standard bivariate Gaussian variables for this 
purpose and anticipated levels of the reliability of a 
stand mean (the fraction of the total variance that 
is due to stands). In each case, estimates of the two 
parameters α1 and α2 are obtained by a standard 
minimization of the squared error in the pursued 
estimate of the (known) among-stand variance.

Our proposed new method – for retrieving an 
among-stand variance from sample data collected 
under a design that does not allow a direct estima-
tion – was also superior to a methods proposed in 
an earlier study (Magnussen 2018). Under OPS, the 
absolute bias incurred with the new method was at 
most 50% of the bias with the older method (not 
shown). Under QSYST, the results for age classes 
one to three were similar, but in age classes four to 
seven, the absolute bias with the new and the older 
method was comparable to within 10%.

CONCLUSION

Field sampling designs with sample units uni-
formly distributed across space or feature space of 
important auxiliary variables are efficient, and they 
usually deliver accurate population and stratum es-
timates of forest resource attributes. However, they 
rarely allow a direct estimation of the among stand 
variance which is required for computing a reliable 
confidence interval for a predicted stand mean. The 
proposed new method for retrieval of this variance 

works for any design with sample locations strati-
fied by an auxiliary variable. As demonstrated, con-
fidence intervals for a stand mean obtained with the 
proposed method were better or at least at par with 
intervals obtained with less efficient designs that al-
low a direct estimation of the among-stand variance. 
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