J. For. Sci., 2019, 65(12):493-503 | DOI: 10.17221/107/2019-JFS
Calculation of the aboveground carbon stocks with satellite data and statistical models integrated into the climatic parameters in the Alborz Mountain forests (northern Iran)Original Paper
- 1 Department of Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 2 Research Institute of Forests and Ranglands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
The forest ecosystems of northern Iran in the Alborz Mountains with a wide distribution range have variations in the composition and types of the plants, soil, structure, carbon stocks and climatic conditions. This study investigated the use of a satellite database and climatic parameters in estimating the carbon reserves. Three regions were selected for the distribution range of these forests. The data of 4 climatic parameters (MAP, MHR, MAE and MAT) were modelled based on the relationship with an elevation gradient. 5 spectral vegetation indices (RVI, NDVI, SR, NDGI, DVI and TVI) and near-infrared band (NIR) extracted from the satellite data and the aboveground carbon data of these forests were modelled based on a regression analysis. Finally, the best model of the relationship between the climate variables and the carbon stocks and the satellite indices was obtained from the multivariate linear regression equation and the R2 coefficient. Accordingly, the most influential climatic parameters on the carbon stocks of these forests were precipitation, temperature, and also the most significant indices were NDVI, RVI and NIR band. This research is an attempt to model the calculations of the aboveground carbon in the forests of northern Iran in relation to the climatic parameters using satellite imagery.
Keywords: climate; carbon trees; broadleaf forests; spectral indices
Published: December 31, 2019 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdollahnejad A., Panagiotidis D., Joybari S.S., Surový P. (2017): Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data. MDPI AG. Forests, 8: 19. DOI: 10.3390/f8020042
Go to original source... - Akhani H., Djamali M., Ghorbanalizadeh A. Ramezani, E. (2010): Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42: 231-258.
- Álvarez-Dávila E., Cayuela L., González-Caro S., Aldana A.M., Stevenson P.R., Phillips O., Cogollo Á., Peñuela M.C., von Hildebrand P., Jiménez E. Melo O., Londoño-Vega A.C., Mendoza I., Velásquez O., Fernández F., Serna M., Velázquez-Rua C., Benítez D., Rey-Benayas J.M. (2017): Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PloS One,12: e0171072. DOI: 10.1371/journal.pone.0171072
Go to original source...
Go to PubMed... - Ardakani M.R. (2018): Ecology. Tehran, Tehran University: 340. (in Persian)
- Baccini A., Friedl M.A., Woodcock C.E. Warbington R. (2004): Forest biomass estimation over regional scales using multisource data. Geophysical research letters, 31: 4. DOI: 10.1029/2004GL019782
Go to original source... - Birth G.S. and McVey G.R. (1968): Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agronomy Journal, 60: 640-643. DOI: 10.2134/agronj1968.00021962006000060016x
Go to original source... - Chamard P., Courel M.F., Ducousso M., Guénégou M.C., Le Rhun J., Levasseur J.E., Loisel C., Togola M. (1991): Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation des formations végétales actives. Télédétection et Cartographie, Presses de l'Universite de Quebec, Montreal; Canada, AUPELF-UREF: 203-209.
- Chen L., Wangc Y., Ren C., Zhang B., Wang Z. (2019a): Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. Forest Ecology and Management, 447: 12-25. DOI: 10.1016/j.foreco.2019.05.057
Go to original source... - Chen L., Wang Y., Ren C., Zhang B. Wang Z. (2019b): Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data. Remote Sensing, 11: 414. DOI: 10.3390/rs11040414
Go to original source... - Chenge I.B., Osho J.S., (2018): Mapping tree aboveground biomass and carbon in Omo Forest Reserve Nigeria using Landsat 8 OLI data. Southern Forests: A Journal of Forest Science, 80: 341-350. DOI: 10.2989/20702620.2018.1463150
Go to original source... - Dube T., Mutanga O. (2016): The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 119: 415-425. DOI: 10.1016/j.isprsjprs.2016.06.017
Go to original source... - FAO (2015): Global Forest Resources Assessment, how are the world's forests changing? Second edition. Food and Agriculture Organization of the United Nations, Rome: 54.
- Faraji F., Mataji A., Babaei Kafaki S., Vahedi A.A. (2015): The relationship between plant diversity and above-ground biomass changes in Fagus orientalis L. forests (Case study: Hajikola-Tirankoli, Sari). Iranian Forest Journal, Iranian Forestry Association. 7: 151-165. (in Persian)
- Farajzadeh M. (2015): Climatology techniques. Publishing of Organization for the Study and Compilation of Humanities Books of Universities: 288.
- Hosseini S.M. (2010): Forest operations management and timber products in the Hyrcanian forests of Iran. FORMEC in Forest engineering: Meeting the needs of the society and the environment, July 11 - 14, 2010, Padova - Italy: 11-14.
- IPCC (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF). Available at: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm
- Jafari S.M., Zarre S. Alavipanah S.K. (2013): Woody species diversity and forest structure from lowland to montane forest in Hyrcanian forest ecoregion. Journal of Mountain Science, 10: 609-620. DOI: 10.1007/s11629-013-2652-2
Go to original source... - Jordan C.F. (1969): Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50: 663-666. DOI: 10.2307/1936256
Go to original source... - Jourgholami M. and Majnounian B. (2011): Harvesting systems in Hyrcanian forest, Iran; limitations and approaches. The forest engineering network (Formec, Austria, Proceedings) October: 9-13.
- Kalbi S., Fallah A., Shataee SH. (2014): Estimation of forest attributes in the Hyrcanian forests, comparison of advanced space-borne thermal emission and reflection radiometer and satellite poure I'observation de la terre-high resolution grounding data by multiple linear, and classification and regression tree regression models. Journal of Applied Remote Sensing, 8: 083632 (2014). DOI: 10.1117/1.JRS.8.083632
Go to original source... - Lu D., Chen Q., Wang G., Liu L., Li G., Moran E. (2016): A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9: 63-105. DOI: 10.1080/17538947.2014.990526
Go to original source... - Luther J.E., Fournier R.A., Hall R.J., Ung C.H., Guindon L., Piercey D.E., Lambert M.C. Beaudoin A. (2002): A strategy for mapping Canada's forest biomass with Landsat TM imagery. In Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. IEEE International, 3: 1312-1315.
Go to original source... - Marshall A.R., Willcock S., Platts P.J., Lovett J.C., Balmford A., Burgess N.D., Latham J.E., Munishi P.K.T., Salter R., Shirima D.D., Lewis S.L. (2012): Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Journal of Biological Conservation, 154: 20-33. DOI: 10.1016/j.biocon.2012.03.017
Go to original source... - Marvie-Mohadjer M.R. (2012): Silviculture. Tehran, University of Tehran Press: 400.
- Mirajhorlou K., Akhavan R. (2017): Forest density and orchard classification in Hyrcanian forests of Iran using Landsat 8 data. Journal of Forest Science, 63: 355-362.
Go to original source... - Motlagh M.G., Kafaky S.B., Mataji A., Akhavan R. (2018): Estimating and mapping forest biomass using regression models and Spot-6 images (case study: Hyrcanian forests of north of Iran). Environmental Monitoring and Assessment, 190: 352. DOI: 10.1007/s10661-018-6725-0
Go to original source...
Go to PubMed... - Naqinezhad A., Zarezadeh S. (2013): A contribution to flora, life form and chorology of plants in Noor and Sisangan lowland forests. Journal of Taxonomy and Biosistematics, 4: 31-44.
- Nyamugama A., Kakembo V. (2015): Estimation and monitoring of aboveground carbon stocks using spatial technology. South African Journal of Science, 111: 7. DOI: 10.17159/sajs.2015/20140170
Go to original source... - Ostadhashemi R., Rostami Shahraji T., Roehle H., Mohammadi Limaei S. (2014): Estimation of biomass and carbon storage of tree plantations in northern Iran. Journal of Forest Science, 60: 363-371. DOI: 10.17221/55/2014-JFS
Go to original source... - Perry C.R., Lautenschlager L.F. (1984): Functional equivalence of spectral vegetation indices. Journal of Remote Sensing of Environment. 14: 169-182. DOI: 10.1016/0034-4257(84)90013-0
Go to original source... - Poorzady M., Bakhtiari F. (2009): Spatial and temporal changes of Hyrcanian forest in Iran. iForest-Biogeosciences and Forestry, 2: 198. DOI: 10.3832/ifor0515-002
Go to original source... - Rana B.S., Singh S.P. Singh R.P. (1989): Biomass and net primary productivity in Central Himalayan forests along an altitudinal gradient. Forest ecology and management, 27: 199-218. DOI: 10.1016/0378-1127(89)90107-2
Go to original source... - Rouse Jr.J., Haas R.H., Schell J.A., Deering D.W. (1974): Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium. I: NASA, Washington, DC: 309-317.
- Sagheb-Talebi K., Sajedi T. Pourhashemi M. (2014): Forests of Iran: A Treasure from the Past, a Hope for the Future, 10: 39-151.
Go to original source... - Sharifi A., Amini J. Pourshakouri F. (2013): Allometric Model Development for Above-Ground Biomass Estimation in Hyrcanian Forests of Iran. World Applied Sciences Journal, 28: 1322-1330.
- Siadati S., Moradi H., Attar F., Etemad V., Hamzeh'ee B.E.H.N.A.M. Naqinezhad A., (2010): Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa, 7: 1-18.
Go to original source... - Tucker C.J. (1979): Red and photographic infrared linear combinations for monitoring vegetation. Journal of remote sensing of Environment. 8: 127-150. DOI: 10.1016/0034-4257(79)90013-0
Go to original source... - Vafaei S., Soosani J., Adeli K., Fadaei H., Naghavi H., Pham T. Tien Bui D. (2018): Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10: 172: DOI: 10.3390/rs10020172
Go to original source... - Van Pham M., Pham T.M., Du Q.V.V., Bui Q.T., Van Tran A., Pham H.M., Nguyen T.N. (2019): Integrating Sentinel-1A SAR data and GIS to estimate aboveground biomass and carbon accumulation for tropical forest types in Thuan Chau district, Vietnam. Remote Sensing Applications: Society and Environment, 14: 148-157. DOI: 10.1016/j.rsase.2019.03.003
Go to original source... - Watson C. (2009). Forest carbon accounting: overview and principles. Forest Carbon Accounting: Overview and Principles: 39.
- Yan F., Wu B., Wang Y. (2013): Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years. Journal of Arid Land. 5: 521-530. DOI: 10.1007/s40333-013-0180-0
Go to original source... - Yin G., Zhang Y., Sun Y., Wang T., Zeng Z., Piao S. (2015): MODIS based estimation of forest aboveground biomass in China. PloS One, 10: e0130143. DOI: 10.1371/journal.pone.0130143
Go to original source...
Go to PubMed... - Zhang J., Huang S., Hogg E.H., Lieffers V., Qin Y., He F. (2014): Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences. 11: 2793-2808 DOI: 10.5194/bg-11-2793-2014
Go to original source... - Zhu B., Wang X., Fang W., Piao S., Shen H., Zhao S., Peng C. (2010): Altitudinal changes in a carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123: 439-452. DOI: 10.1007/s10265-009-0301-1
Go to original source...
Go to PubMed... - Zhu Y., Liu K., Liu L., Wang S., Liu H. (2015): Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images. Journal of Remote Sensing, 7: 12192-12214. DOI: 10.3390/rs70912192
Go to original source... - Zobeiry M. (2000): Forest Inventory (measurement of tree and stand). Tehran, Tehran University Publication: 401.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

