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Abstract: The forest ecosystems of northern Iran in the Alborz Mountains with a wide distribution range have variations in 
the composition and types of the plants, soil, structure, carbon stocks and climatic conditions. This study investigated the 
use of a satellite database and climatic parameters in estimating the carbon reserves. Three regions were selected for the 
distribution range of these forests. The data of 4 climatic parameters (MAP, MHR, MAE and MAT) were modelled based 
on the relationship with an elevation gradient. 5 spectral vegetation indices (RVI, NDVI, SR, NDGI, DVI and TVI) and 
near-infrared band (NIR) extracted from the satellite data and the aboveground carbon data of these forests were modelled 
based on a regression analysis. Finally, the best model of the relationship between the climate variables and the carbon 
stocks and the satellite indices was obtained from the multivariate linear regression equation and the R2 coefficient. Ac-
cordingly, the most influential climatic parameters on the carbon stocks of these forests were precipitation, temperature, 
and also the most significant indices were NDVI, RVI and NIR band. This research is an attempt to model the calculations 
of the aboveground carbon in the forests of northern Iran in relation to the climatic parameters using satellite imagery.
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The temperate deciduous broadleaf forests known 
as the Hyrcanian forests in northern Iran are the most 
important and valuable forest ecosystem in the vicin-
ity of the world’s largest lake (Caspian) (Siadati et 
al. 2010). Estimates have shown that the area of ​​these 
forests was about 5 million hectares in the past, with 
the development of villages and the expansion of cit-
ies, converting the forested land into farmland and 
gardens, the grazing of livestock, deforestation, it 
has been steadily declining over the recent decades 
(Kalbi et al. 2014; Naqinezhad, Zarezadeh 2013). 
So, there are approximately 1.8 million hectares that 
remain today (Marvie-Mohadjer 2012; Hosseini 

2010; Sagheb-Talebi et al. 2014). The distinction of 
these forests is that, as the remnants of the Tertiary 
period, in fact the last remnants of the world’s nat-
ural broadleaf forests, they have species that are in-
cluded in the fossils in Europe in that era (Akhani et 
al. 2010). Therefore, they are considered to be one of 
the richest and most unique forests in the world com-
pared to their counterparts (Jafari et al. 2013). These 
forests are spread over three of the northern prov-
inces of Iran (Gilan, Mazandaran and Golestan) on 
the northern slopes of the Alborz Mountains, 800 km  
long and up to 2,800 m above sea level (Sagheb-
Talebi et al. 2014; Jourgholami, Majnounian 
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2011). This wide geographic distribution range 
certainly has differences in the climate conditions, 
soil, site quality, species diversity and structure of 
these forests (Marvie-Mohadjer 2012). These for-
ests are also subject to a range of diverse ecological 
conditions in the species and structure due to their 
mountainous nature and high-altitude expansion 
along the elevation gradient (Siadati et al. 2010).

Changes in the climatic parameters along the el-
evation gradient can affect many forest ecosystem 
characteristics such as the species composition, 
structure, biodiversity and carbon stocks of the 
vegetation and soil in mountain ecosystems (Zhu 
et al. 2010). Climatic factors affect the growth and 
distribution of plants as part of the site factors re-
lated to the atmosphere and the aboveground and 
underground parts, including the air temperature, 
solar radiation, air humidity, wind and atmospher-
ic air pressure (Marvie-Mohadjer 2012). Hence, 
due to the mountainous extent and nature of these 
forests, it is important to understand the role of the 
environmental and climatic variables that control 
the distribution of the forest biomass and carbon. 
Much of the carbon stocks of nature is stored in 
the textures and bodies of the trees and the soil of 
the forests (Ardakani 2018). The forest biomass 
has captured the atmospheric carbon through pho-
tosynthesis for centuries (Dube, Mutanga 2016), 
which itself plays a role in the carbon cycle resis-
tance and climate stability and in preventing global 
warming (Chen et al. 2019b; Vafaei et al. 2018). A 
large area of Iran consists of arid and semi-arid re-
gions. According to the World Food Organization, 
the natural forest ecosystems in this country have 
been declining ever since 1990 (FAO 2015). The re-
search by Faraji et al. (2015) have identified the 
forests of northern Iran as an important biomass 
storage through the aboveground biomass and one 
of the main carbon stocks of Iran. Therefore, cal-
culating the amount of the carbon stocks in these 
forests is a necessity for both the conservation and 
mitigating the climate change as well as the release 
of carbon into the atmosphere.

Estimation of the carbon stored in the forests has 
been experimented with in different ways (Motlagh 
et al. 2018). The most widely applied procedures 
are ground measurement and surveying methods. 
However, it is time-consuming, costly and impracti-
cal for the mountain ecosystems because of the dif-
ficult physiographic and climatic conditions in these 
areas (Watson 2009; Sharifi et al. 2013; Kalbi et 

al. 2014). Recent technological advances such as ar-
cGIS and remote sensing have provided researchers 
and planners with many opportunities (Mirajhor-
lou, Akhavan 2017; Poorzady, Bakhtiari 2009; 
Vafaei et al. 2018; Lu et al. 2016). Because of their 
unique characteristics, such as broad and integrated 
vision, high accuracy, time savings, cost, ease of ac-
cess to information and repeatability, these methods 
have been valuable tools in recent decades for study-
ing and monitoring the carbon stocks and forest bio-
mass (Poorzady, Bakhtiari 2009; Zhu et al. 2015; 
Motlagh et al. 2018; Vafaei et al. 2018 Chen et al. 
2019b; Van Pham et al. 2019).

So far, few studies have been conducted on the 
quantities and distribution of the forest biomass and 
carbon interfering with climate information with 
data from satellites (Baccini et al. 2004; Yin et al. 
2015; Zhang et al. 2014; Dube, Mutanga 2016). 
In Iran, there has been no research on modelling 
the relationship between the forest biomass and the 
aboveground carbon (AGC) with climate variables. 
The only study, by Abdollahnejad et al. (2017), 
has investigared the relationship between the tree 
species distribution and the climatic parameters in 
the Golestan province, using the Quickbird satellite 
data. The aim of this study is to test and model the 
quantity of the carbon stocks in the forests of north-
ern Iran by integrating the satellite data and climatic 
parameters. 

MATERIAL AND METHODS

Study area 

The forests of three watersheds were selected 
in the northern slopes of the Alborz Mountains 
in northern Iran: watershed number 84 in Goles-
tan province, in the east, watershed number 38 in 
Mazandaran province in the centre and watershed 
number 7 in Gilan province, in the west (Fig. 1). 
The studied regions include the uneven structured 
broadleaf forests with Fagus orientalis and other 
species such as Carpinus betulus, Acer sp., Diopyrus 
lotus, Cerasus avium, Alnus sp., Quercus castaneo-
folia, Tilia begonifolia, Parrotia persica, Ulmus sp.. 

The sample plots of 900 m2 were selected random-
ly. These sample plots were identified with arcGIS 
tools within the regions with a homogeneous slope 
(15–35%), the aspect (N, NE, NW) and in two eleva-
tion ranges, 500–800 m and 1,500–1,800 m (Table 1):  
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(i) Mountain forest (1,500–1,800 m) (MoF) and  
(ii) Midaltitude forest (500–800 m) (MiF). 

Ground measurements and calculations of 
carbon stocks of trees

An important parameter for estimating the forest 
carbon stocks is the above-ground biomass (AGB) 
of standing trees (Chenge, Osho 2018; Chen et al. 

2019a). For this purpose, variables such as the diam-
eter at breast height (with a caliper to a millimeter in 
precision), the tree height (with a Suunto to a cen-
timeter in precision), the crown diameters (with a 
tape to a meter in precision) were recorded for all the 
trees in the plot (Nyamugama, Kakembo 2015).

In the calculations using the measured variables of 
the trees, the calculation procedure of the tree bio-
mass was performed according to the IPCC method 
(Ostadhashemi et al. 2014; IPCC 2003) (Eq. 1):

Table 1. The characteristics of the study regions and the results of the AGC values of the trees

AGC ± StDV (t)h'(m)V/ha (m3)N/haForest typeSoil typeMAP
(mm)

MAT
(°C)NoStudy 

areaRegion

303.936 ± 121.2819.04655.870189.28mixed broadleafsandy-loam1,12611–1420MiF
Gilan

373.720 ± 150.3720.16770.287196.11beech standclay-loam1,0358–1128MoF
157.311 ± 104.7021.3426.820100.46mixed broadleafloam92512–1624MiF

Mazandaran
275.409 ± 93.9121.69661.476126.04beech standclay-loam89011–1332MoF
133.948 ± 59.0418.63355.017102.33mixed broadleafclay-loam72512–1620MiF

Golestan
187.837 ± 68.1626.87345.285108.22beech standsilt-loam6958–1420MoF

MoF – montain forest, MiF – midaltitude forest, No – number of plots, MAT– Mean annual temperature (°C), MAP – Mean 
annual precipitation (mm), N/ha – number per ha, V/ha – mean volume per ha, h' – average height, AGC – above-ground 
carbon (t·ha–1), StDV – standard deviation

Fig 1. The location map of the study regions in northern Iran (MoF – mountain forest, MiF – midaltitude forest)
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 2TAGC V WD BEF C     	 (1)

where:
TAGC 	– total above-ground carbon (t)
V 	 – stem volume (m3)
WD 	 – wood density
BEF2 	 – �averaged biomass expansion factor for the 

broadleaf species (1.4).
C 	 – carbon conversion factor (0.5)

The carbon factor (C) of 0.5 was designated as the 
general carbon factor for the tree. The wood specific 
density (WD) (g) was obtained by sampling the for-
est trees (Marshal et al. 2012). 

The stem volume (V) was calculated based on 
Equations 2 and 3.

2

4bA dbh
  	 (2)

  bV A h Kc  
	 (3)

where:
Ab 	 – basal area at the dbh (m2)
dbh 	 – diameter at breast height (m)
h 	 – tree height (m)
Kc 	 – �averaged tree shape coefficient for the broadleaved 

species in northern Iran (0.5) (Zobeiry 2000).

A one-way ANOVA (analysis of variance) and 
Duncan’s test was used to compare the AGC data 
between the regions and a t-test was used to com-
pare the AGC between the two altitude ranges in 
the STATISTICA (SPSS).  

Estimation of the above-ground  
carbon from remote sensing 

SPOT-6 multispectral satellite data acquired in 
August 2016 were used. It corresponds to the date of 
the ground measurements. The SPOT imagery has 
4 spectral bands: blue, green, red, and infrared with 
wavelengths of 0.519–0.454 μm, 0.587–0.527 μm, 
0.694-0.624 μm and 0.880–0.756 μm, respectively, 
and a spatial resolution of 6 m. The panchromatic 
band with a wavelength of 0.745–0.450 μm has a spa-
tial resolution of 1.5 m. The satellite sensor is called 
Naomi. This satellite is one of the high-resolution 
satellites and commercial Earth observation satellites 
built by the EADS Program Center, Astrium (Tou-
louse) is France and launched on September 6, 2012 
from India’s PSLV base (https://azercosmos.az/).

Before applying the images, their quality was eval-
uated for geometrical errors, radiometry and cloud 
spots. The images used in this study were cloudless. 
Also, these images were corrected by the service 
provider. However, to ensure that there were not 
any errors, the geometric correction of the images 
was performed with a number of ground control 
points and topographic maps of the areas. Geomet-
ric correction was undertaken in ENVI software 
(Harris Geospatial Solution).

Appropriate processes, such as calculating veg-
etation indices, using red and infrared bands are 
applied to infer the relationship between these data 
and the ground data (Kalbi et al. 2014). After the 
spectral processing, those equivalent values of the 
plots were extracted from the Vegetation Index (VI) 
and entered as independent variables in the model-
ling process. These indices included the Ratio Veg-
etation Index (RVI), Normalized Difference Vege-
tation Index (NDVI) Simple Ratio (SR), Normalized 
Difference Greenness Index (NDGI), Differential 
Vegetion Index (DVI) and Transformed Vegetation 
Index (TVI) as well as the near-infrared band (NIR)
(Table 2). The modelling was performed by a step-
wise linear multivariable regression to show the re-
lationship between the AGC and the computational 
indices and the NIR. The validity of the regression 
models was evaluated using the root mean square 
error (RMSE) and the coefficient of determination 
(R2) (Equation 4, 5). 
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where:
AGC – �observed value of aboveground carbon, 
AGC – �averaged value of aboveground carbon, 
AGC – �predicted observed value of aboveground carbon, 
N 	 – number of samples (Vafaei et al. 2018). 

Regression modelling  
of the climate parameters

The climate variables considered in this study in-
clude the Mean Annual Precipitation (MAP)(mm), 

^

^

^
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the Mean Annual Temperature (MAT)(C°), the Mean 
Relative Humidity (MRH)(%) and the Mean Annual 
Evaporation (MAE)(mm). They were obtained from 
the nearest meteorological rain stations within and 
around the study regions. Since the climatic stations 
were either scarce or non-existent in the high-altitude 
regions, the modelling was performed using a regres-
sion analysis (Farajzadeh 2015). In each region, and 
for each climate parameter, the types of regression 
equations (linear, exponential and polynomial) were 
constructed based on the altitude (gradient equation) 
in MS Excel (Microsoft). Then, the best equation was 
selected with the highest values of as the gradient 
equation of the climate parameter. In the next step, 
the best gradient equations were introduced into the 
arcGIS (ESRI). The climate parameter zoning maps 
for the study regions were constructed using digital 
elevation model (DEM) in arcGIS. Again, the values 
of the climatic parameters were extracted from the 
layers on the plots in the areas. 

Pearson’s correlation was used to investigate the 
relationship between the climate parameters and the 

independent variables – VI's and the dependent vari-
able – AGC. Finally, the stepwise multivariate linear 
regression analysis was used to find the best regres-
sion model. All the modelling and relationships of this 
section were made in STATISTICA (SPSS) and MS 
Excel (Microsoft).

Results

Comparison of the above-ground  
carbon between the plots

The results of comparing the mean values ​​of AGC ​​
using one-way ANOVA showed significant differ-
ences in AGC between the three regions, both eleva-
tion range MiF and MoF. There is an increasing trend 
from east to west (P ≤ 0.05) (Table 1 and 3). Also, the 
results of t-test AGC indicated that there were signifi-
cant differences between the AGC values ​​in the two 
elevation ranges in all three regions. AGC of MoF is 
bigger than MiF (Table 4) (P ≤ 0.05).

Table 2. The vegetation indices used in the study

ReferenceEquationVegetation Index nameSymbol
Jordan 1969RED/NIRRatio Vegetation IndexRVI

Rouse et al. 1974(NIR – RED)/(NIR + RED)Normalized Difference Vegetation IndexNDVI
Birth, McVey 1968NIR/REDSimple RatioSR
Chamard et al. 1991GREEN – RED/GREEN + REDNormalized Difference Greenness IndexNDGI

Tucker 1979NIR – REDDifferential Vegetion IndexDVI

Perry, Autenschlager 
1984

 0.5
0.5

0.5
NDVI

NDVI
NDVI





Transformed Vegetation IndexTVI

RED – red multispectral band, NIR – near-infrared band, GREEN – red multispectral band

Table 3. The results of the AGC variation analysis in the study regions

PFMean SquaredfSum of SquaresCarbon Stock Source
0.000**13.151109461.8072218933.613(MoF)

AGC
0.000**17.63893585.0352187170.070(MiF)

MoF – montain forest, MiF – midaltitude forest, df – degrees of freedom, F – Fisher's test, P – probability, ** significant at level 99%

Table 4. The T-test results of the AGC between the two elevation ranges in the study regions 

PtFdfMean DifferenceCarbon Stock SourceRegion
0.01431.4902.2954648.92317AGCGilan
0.000**4.6221.7635486.76323AGCMazandaran
0.033*2.2220.0173841.16643AGCGolestan

AGC – aboveground carbon, df – degrees of freedom, P – probability, F – Fisher's test, t – Student's test, *significant at level 95%, 
** significant at level 99%

https://www.agriculturejournals.cz/web/jfs/


498

Original Paper	 Journal of Forest Science, 65, 2019 (12): 493 –503

https://doi.org/10.17221/107/2019-JFS

Results of the climatic information

The selected gradient equations for each of the 
climate parameters are presented in Table 5. In the 
equations, y is the value of the climatic parameter 
and x is the altitude.

The relationship between the temperature and 
humidity with the altitude in all three study regions 
was a linear inverse relationship with the increasing 
altitude, these two parameters showed a decreasing 
trend. The relation of the MAP with the altitude is 
a polynomial relationship with the increasing alti-
tude to a certain altitude which initially has a de-
creasing trend after which we can see an increasing 
trend. The MAE parameter in Gilan has an increas-
ing linear relationship with the altitude, while, in 
the other two regions, it has an upward trend to a 
certain altitude, followed by a downward trend.

The results of estimating the above-ground 
carbon from the satellite data

The best regression model between the AGC val-
ues and indices and the NIR band in the study areas 
was the linear relationship among which the mod-
els with the highest R² and the lowest RMSE were 
selected as the most appropriate models. The rela-
tionship between the NDVI, TVI, NDGI, DVI and 
NIR band with the AGC was a significant positive 
relationship, but this relationship was the inverse 

for the RVI and SR. Among the studied indices, 
the NDVI, RVI and NIR bands showed the highest 
significant level and the highest R² and the lowest 
RMSE in all the regions. These indices and NIR 
bands were the best predictors of the AGC model 
in the study areas. The single and multivariable re-
gression models were constructed between the the 
values of the AGC based on the plots as the depen-
dent variable and the indices as the independent 
variable. The models with the highest R² are listed 
in Table 6. 

Modelling the relationship between the 
climate parameters and the indices with the 

above-ground carbon

At this stage, the climatic parameters and veg-
etation indices achieved from the models made in 
the previous section were entered into a multiple 
linear regression model to finally select the com-
putational model with the highest R2 (Table 7). 
The best model presented for modelling the rela-
tionship between the climate parameters and the 
vegetation indices and the AGC values ​​in Gilan 
shows that the MAP, MAT, NIR band and NDVI 
are the best predictors of the model. In Mazan-
daran, the MAP and RVI are the best predictors, 
and, finally, in Golestan province, the best predic-
tors of the model are shown for the AGC with the 
MAT and NDVI.

Table 5. The climatic equations used in the climate map in the study regions

ModelR2EquationRegion
linear0.988MAT = –0.004x + 16.13

Gilan
polynomial0.797MAP = 0.0006 –1.089x + 1324.40

linear0.661MRH = –0.0061x + 78.77
linear0.994MAE = 0.3088x + 775.21
linear0.973MAT = –0.0032x + 16.79

Mazandaran
polynomial0.981MAP = 0.0002–0.612x + 1094.50

linear0.773MRH = –0.00114x + 83.11
polynomial0.711MAE = –0.0004 + 0.569x + 978.73

linear0.834MAT = –0.0036x + 18.57

Golestan
polynomial0.319MAP = 4E– 0.7 – 0.499x + 631.03

linear0.783MRH = –0.009x + 71.92
polynomial0.697MAE = 0.002 + 0.546x + 922.67

MAT – mean annual temperature (C°), MAP – mean annual precipitation (mm), MRH – mean relative humidity (%),  
MAE – mean annual evaporation (mm), x – altitude, R2  – coefficient of determination
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Discussion and conclusion

In this study, the AGC was estimated at two ele-
vation ranges, namely, the MoF and MiF and along 
the northern slopes of the Alborz Mountains in 
three regions in northern Iran. Based on the results 
of the calculations, the estimated AGC was sig-
nificantly bigger than the mountain elevations and 
from east to west. 

The general trend of the climatic parameters in 
all three study regions, based on the regression and 
output equations of the models in GIS, is that by 
increasing the altitude, the mean temperature de-
creases, but the precipitation decreases to a certain 
height and then there is an increasing trend. The 
relative humidity has also decreased with the rising 
altitude in all three provinces where these forests 
are present in the Alborz Mountains. Evaporation 
in Guilan showed a linear upward trend and in the 
other two regions initially increased with a peak at 
800 m and 1200 m, respectively, for Mazandaran 
and Golestan and then decreased.

There is a basic difference between the eastern 
and western parts of the Hyrcanian forests in terms 
of the precipitation and temperature. So that the 
highest amount of rainfall and humidity was ob-
served in the western part (Gilan) and, in contrast, 

the highest MAT and drought period in the eastern 
part (Golestan), which, in turn, caused changes in 
the environmental conditions, structural changes, 
species diversity and lead to variations in the forest 
biomass and carbon (Akhani et al. 2010; Jourg-
holami, Majnounian 2011; Kalbi et al. 2014). 

Previous studies in the northern forests of Iran 
have noted the significant fluctuations in the densi-
ty and growth rate and biodiversity of these forests 
from east to west (Jafari et al. 2013; Motlagh et 
al. 2018; Siadati et al. 2013; Mirajhorlou, Akha-
van 2017; Akhani et al. 2010). Different findings 
have always been achieved in this type of study, 
which could be due to human interference, hetero-
geneity in the microclimate, soil and topography. 
Also, based on the results obtained in the present 
study, there is an increase in the AGC in these for-
ests despite the decreasing temperatures. With an 
increasing altitude, the temperature decreases. Be-
cause the photosynthetic activity relies on the tem-
perature, it also has an effect on the AGB and AGC 
(Alvarez-Davila et al. 2017). Photosynthesis 
increases slightly with an increasing temperature, 
but, on the other hand, it increases the respiration 
which, with high humidity, causes a sultry state at 
lower altitudes (Rana et al. 1989). However, at the 
local and regional scales, the biomass and carbon 

Table 6. The most favourable estimation models obtained from the single and multivariable regression analysis between 
the above-ground carbon (AGC in t) and the indices and the bands used in the study 

Region Regression equation R2 RMSE (t·ha–1)

Gilan
MoF AGC = 123.88 + 5.35 (NDVI) + 0.0003 (NIR) – 8.25 (RVI) 0.60 0.19
MiF AGC = 100.41 + 2.37 (NDVI) + 0.01 (NIR) 0.63 0.21

Mazandaran
MoF AGC = 78.36 + 8.982 (NDVI )– 9.22 (RVI) 0.66 0.52
MiF AGC = 69.01 + 5.57 (NDVI) + 0.07 (NIR) 0.66 0.88

Golestan
MoF AGC = 23.669 + 3.741 (NDVI) + 6.488 (NIR) 0.71 0.09
MiF AGC = 18.21 + 2.09 (NDVI) + 7.09 (NIR) 0.69 0.14

MoF – montain forest, MiF – midaltitude forest, AGC – aboveground carbon, NDVI – Normalized Difference Vegetation Index, 
NIR – near-infrared band, RVI – Ratio Vegetation Index, R2  – coefficient of determination, RMSE  – root mean square error

Table 7. Modelling the AGC values with the integration of the climate parameters and the spectral indices 

Region Model R2 RMSE (t·ha–1)
Gilan AGC = 0.68 (MAP) – 3.188 (MAT) + 412.262 (NDVI) – 27.676 (NIR) + 127.330 0.619 15.23
Mazandaran AGC = –0.059 (MAP) – 2.437 (RVI) + 113.098 0.706 13.88
Golestan AGC = –2.261 (MAT) – 0.041 (NDVI) – 77.597 0.664 17.45

AGC – aboveground carbon, MAP – mean annual precipitation (mm), MAT – mean annual temperature (C°), NDVI – Normal-
ized Difference Vegetation Index, NIR – near-infrared band, RVI – Ratio Vegetation Index, R2  – coefficient of determination, 
RMSE  – root mean square error
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values are affected by a large number of variables. 
The present results can be attributed to the rela-
tively higher soil fertility of the forest sites in the 
high land. In addition, the tree density, tree height, 
and basal area are important predictive parame-
ters for estimating the carbon stocks, which in this 
study have been influential in the results obtained.

Based on the strongest regression models in this 
study, the most important variables predicting the 
AGC ​​in Gilan were the MAP, MAT, near-infrared 
band and the NDVI. In Mazandaran, the MAP and 
the RVI in relation to the carbon stocks of the for-
ests in this region have created the most favour-
able predictive model and in Golestan province, 
the MAT parameter and NDVI were the best pa-
rameters. In the final regression equations made 
in all three zones, the two factors of precipitation 
and temperature showed the strongest relation-
ship with the highest values ​​of the coefficient of 
determination with the AGC. 

This indicates that, in general, these two factors 
are the main climatic factors controlling the AGC 
in the forests of northern Iran. The results of two 
indices of the NDVI, RVI and near-infrared band 
(NIR) are suggested to be the best variables in esti-
mating the carbon stocks of the broadleaf decidu-
ous trees in northern Iran. These computational 
vegetation indices are sensitive to the photosyn-
thetic parts of the vegetation through the optical 
images (Yan et al. 2013). 

On the other hand, the multivariable regres-
sion analysis has been used as one of the empiri-
cal modelling methods in most studies to estimate 
the quantitative characteristics such as the car-
bon stocks of the trees (Nyamugama, Kakembo 
2015; Baccini et al. 2004). In Gilan and Mazan-
daran, the multivariable linear regression models 
with the NDVI, RVI and NIR and in Golestan, the 
NDVI and NIR regression models were selected as 
the best multivariate relationships for estimating 
the forest AGC.

Several studies have concluded that adding sat-
ellite spectral information in combination with 
environmental information can improve the pre-
diction of the qualitative and quantitative charac-
teristics of the forests. Among the results of Ab-
dollahnejad et al. (2017), the study in the forests 
of Golestan province in northern Iran showed that 
in modelling the tree species diversity with the 
QuickBird data and environmental parameters, 
the temperature and then the precipitation were 

significant variables. Also, the findings of Luther 
et al. (2002) have shown that biomass models im-
prove the biomass estimations when developed as 
a function of remote sensing variables in combi-
nation with the environmental characteristics in-
cluding the moisture index, precipitation, growth 
period and digital elevation model. Baccini et 
al. (2004) examined the forest biomass across the 
national forests in California, USA, using MODIS 
information, the annual precipitation, the annual 
temperature, altitude information and statistical 
models. The results showed that the MODIS data 
in combination with the topography and climate 
can be used to produce 

AGB maps with good accuracy across these re-
gions. Dube and Mutanga (2016) used a data-
base of WorldView2 with environmental variables 
of radiation, temperature, soil moisture coefficient, 
elevation, slope and aspect to estimate the biomass 
and carbon in a natural forest and a planted forest 
in South Africa. The results showed that the inte-
gration of the spectral indices and data bands with 
the climatic variables improved the AGB and AGC 
estimates and provided a robust tool for the accu-
rate and reliable estimation of the AGB and AGC 
stocks in the forest ecosystems.

One of the major challenges in the results of the 
studies focused on the integration of the climate 
and satellite variables in estimating the AGB and 
AGC in the forests can be the low accuracy of the 
biomass and carbon values, the estimates due to 
the low spatial resolution of the images, the effects 
of human activities, the previous climate, the study 
scale, etc. has been noted (Yin et al. 2015; Dube, 
Mutanga 2016; Nyamugama, Kakembo 2015; 
Zhang et al. 2014; Baccini et al. 2004). 

Since the estimation and mapping of these pa-
rameters is essential for efficient forest manage-
ment and their role in the global carbon cycle, 
researchers who combine multispectral imagery 
with a spatial resolution of 10 meters and above 
with the environmental variables which can esti-
mate the quantification and mapping of impor-
tant structural properties of the forests are more 
successful (Dube, Mutanga 2016; Chen et al. 
2019a). In this study, the satellite images used have 
this capability. 

The reasons for the dissatisfaction of some of 
the results of the indices used in this study can be 
attributed to the mixed nature of the forests, the 
multilayered forest stands and the mountain pro-
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file of the Hyrcanian forests and the existence of a 
variety of error sources (Kalbi et al. 2014). How-
ever, the use of multivariable methods in Plant Bi-
ological Climate Research has the potential to dra-
matically reduce the primary variables to several 
limiting and measurable factors in the distribution 
of the forest carbon stocks (Yin et al. 2015). 

The research is an attempt to model the calcula-
tions of the AGC in the Hyrcanian forests in north-
ern Iran in relation to the climatic parameters 
using satellite imagery. The results of this study 
demonstrate the effectiveness of the multivariable 
statistical methods in modelling the severity of the 
effect of the climate factors on the distribution of 
the forest carbon stocks. The results also illustrat-
ed that the carbon stocks were the most sensitive 
to the two factors of the mean temperature and the 
mean precipitation. 

In remote sensing estimations, in order to quick-
ly and reliably estimate the carbon of the trees in 
these forests, based on the results of this study, 
the vegetation indices of the NDVI, RVI and near-
infrared band (NIR) are recommended as the most 
desirable predictor variables to reduce the estima-
tion costs. 

Finally, due to the high extent of the distribution of 
these forests, it is suggested that the interactions be-
tween the carbon stocks of the different forest com-
munities and species with the factors such as the soil 
and geological structures should be investigated and 
entered into a database for modelling it in order to 
manage and protect these valuable forests.
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