J. For. Sci., 2018, 64(12):523-532 | DOI: 10.17221/106/2018-JFS
Aboveground biomass estimation in linear forest objects: 2D- vs. 3D-dataOriginal Paper
- Institute of Agricultural Engineering, University of Kiel, Kiel, Germany
Wood-chips of linear forest objects (hedge banks and roadside plantings) are used as sustainable energy supply in wood-chip heating systems. However, wood yield of linear forest objects is very heterogeneous and hard to estimate in advance. The aim of the present study was to compare the dry mass estimation potentials of two different non-destructive data: (i) Canopy area (derived from aerial images) and mean age at stump level (2D), (ii) volume of vegetation cover based on structure from motion (SfM) via unmanned aerial vehicle (3D). These two types of data were separately used to predict reference dry mass (ground truth) in eleven objects (5 hedge banks and 6 roadside plantings) in Schleswig-Holstein, Germany. The predicting potentials were compared afterwards. The reference dry mass was ascertained by weighing after harvesting and drying samples to constant weight. The model predicting reference dry mass using canopy area and mean age at stump level achieved a relative root mean square error (RMSE) of 52% (42% at larger combined plot sizes). The model predicting reference dry mass using SfM volume achieved a relative RMSE of 30% (16% at larger combined plot sizes). This result indicates that biomass is better described by volume of vegetation cover than by canopy area and age.
Keywords: SfM; aerial images; hedge banks; roadside plantings; UAV; dry biomass
Published: December 31, 2018 Show citation
References
- Dandois J.P., Ellis E.C. (2010): Remote sensing of vegetation structure using computer vision. Remote Sensing, 2: 1157-1176.
Go to original source... - Díaz-Varela R., de la Rosa R., León L., Zarco-Tejada P. (2015): High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing, 7: 4213-4232.
Go to original source... - Eigner J. (1982): Bewertung von Knicks in Schleswig-Holstein. Laufener Seminarbeiträge No. 5/1982: 110-117.
- Fritz A., Kattenborn T., Koch B. (2013): UAV-based photogrammetric point clouds - tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/ W2: 141-146.
Go to original source... - Hyde P., Nelson R., Kimes D., Levine E. (2007): Exploring LiDAR-RaDAR synergy - predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106: 28-38.
Go to original source... - Isensee E., Stübig D.K., Lubkowitz C. (2000): Bergung und Aufbereitung von Knick- und Schwachholz. Landtechnik - Agricultural Engineering, 55: 346-347.
- Lingner S., Thiessen E., Müller K., Hartung E. (2018): Dry Biomass Estimation of Hedge Banks: Allometric Equation vs. Structure from Motion via Unmanned Aerial Vehicle. Journal of Forest Science, 64: 149-156.
Go to original source... - Mantau U. (2012): Holzrohstoffbilanz Deutschland, Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015. Hamburg, Universität Hamburg: 65.
- Miller J., Morgenroth J., Gomez C. (2015): 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban Forestry & Urban Greening, 14: 932-940.
Go to original source... - Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (2017): January 20: Durchführungsbestimmungen zum Knickschutz. Kiel, Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein: 19.
- Muukkonen P., Heiskanen J. (2005): Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sensing of Environment, 99: 434-447.
Go to original source... - Muukkonen P., Heiskanen J. (2007): Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment, 107: 617-624.
Go to original source... - Ploton P., Pélissier R., Proisy C., Flavenot T., Barbier N., Rai S.N., Couteron P. (2012): Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecological Applications, 22: 993-1003.
Go to original source...
Go to PubMed... - Popescu S.C., Zhao K., Neuenschwander A., Lin C. (2011): Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment, 115: 2786-2797.
Go to original source... - Segura M., Kanninen M., Suárez D. (2006): Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68: 143-150.
Go to original source... - Seidel D., Busch G., Krause B., Bade C., Fessel C., Kleinn C. (2015): Quantification of biomass production potentials from trees outside forests - a case study from Central Germany. BioEnergy Research, 8: 1344-1351.
Go to original source... - Snavely N., Seitz S.M., Szeliski R. (2007): Modeling the world from internet photo collections. International Journal of Computer Vision, 80: 189-210.
Go to original source... - Tao W., Lei Y., Mooney P. (2011): Dense point cloud extraction from UAV captured images in forest area. In: Proceedings of the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM 2011), Fuzhou, June 29-July 1, 2011: 389-392.
Go to original source... - Turner D., Lucieer A., Watson C. (2012): An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sensing, 4: 1392-1410.
Go to original source... - Verscheure P. (1998) Energiegehalt von Hackschnitzeln - Überblick und Anleitung zur Bestimmung. Versuchsbericht 1998/14. Freiburg im Breisgau, Forstliche Versuchsund Forschungsanstalt Baden-Württemberg, Abteilung Arbeitswirtschaft und Forstbenutzung: 13.
- Walther R., Bernath K. (2009): Energieholzpotenziale ausserhalb des Waldes. Studie im Auftrag des Bundesamtes für Umwelt (BAFU) und des Bundesamtes für Energie (BFE). Luzern, Interface Institut für Politikstudien, Zollikon, Ernst Basler + Partner AG: 82.
- Wickham H. (2009): ggplot2: Elegant Graphics for Data Analysis. New York, Springer-Verlag: 213.
Go to original source... - Wood S.N. (2011): Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 73: 3-36.
Go to original source... - Zarco-Tejada P.J., Diaz-Varela R., Angileri V., Loudjani P. (2014): Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99.
Go to original source... - Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005): Biomass and Stem Volume Equations for Tree Species in Europe. Helsinki, Finnish Society of Forest Science, Finnish Forest Research Institute: 63.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

