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Abstract

Lingner S., Thiessen E., Hartung E. (2018): Aboveground biomass estimation in linear forest objects: 2D- vs.
3D-data. J. For. Sci., 64: 523—-532.

Wood-chips of linear forest objects (hedge banks and roadside plantings) are used as sustainable energy supply in
wood-chip heating systems. However, wood yield of linear forest objects is very heterogeneous and hard to estimate
in advance. The aim of the present study was to compare the dry mass estimation potentials of two different non-
destructive data: (i) Canopy area (derived from aerial images) and mean age at stump level (2D), (ii) volume of veg-
etation cover based on structure from motion (SfM) via unmanned aerial vehicle (3D). These two types of data were
separately used to predict reference dry mass (ground truth) in eleven objects (5 hedge banks and 6 roadside plant-
ings) in Schleswig-Holstein, Germany. The predicting potentials were compared afterwards. The reference dry mass
was ascertained by weighing after harvesting and drying samples to constant weight. The model predicting reference
dry mass using canopy area and mean age at stump level achieved a relative root mean square error (RMSE) of 52%
(42% at larger combined plot sizes). The model predicting reference dry mass using SfM volume achieved a relative
RMSE of 30% (16% at larger combined plot sizes). This result indicates that biomass is better described by volume of

vegetation cover than by canopy area and age.
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According to the European Renewable Energy
Directive (2009/28/EG) renewable energy is sup-
posed to cover at least 20% of the gross energy
consumption in 2020 within the European Union.
In Germany, the amount of woody biomass used
as a source for energy has already increased during
the last decades (MANTAU 2012). The future de-
mand for woody biomass could in part be supplied
by existing linear forest objects (hedge banks and
roadside plantings) (ISENSEE et al. 2000; SEIDEL et
al. 2015).

The demand of wood-chips implies the need for
woody biomass predicting models. Biomass pre-
dicting models could help with logistical planning
and economical estimations. Biomass predictions

based on allometric equations were already com-
pared to biomass predictions based on Structure
from Motion (SfM) in a previous study (LINGNER
et al. 2018). Dry mass predictions based on SfM
turned out to be comparably accurate. However
SfM is time consuming and technically demanding.

SfM is a remote sensing technique that constructs
3D point clouds from numerous overlapping pho-
tos. The underlying algorithms use methods of
computer vision and photogrammetry. These algo-
rithms are looking for key points in individual pho-
tos and are matching these points with associated
key points in other photos. Thus, the camera posi-
tion and its calibration plus the location of the key
points are estimated. Afterwards these key points

Supported by the European Innovation Partnerships, Project No. 704.06.EIP and by the Gesellschaft fiir Energie und
Klimaschutz Schleswig-Holstein GmbH, Project No. 19/15.

J. FOR. SCL, 64, 2018 (12): 523-532 523



are converted into a 3D point cloud (SNAVELY et al.
2007; TURNER et al. 2012). Analysing these point
clouds enables e.g. the calculation of arbitrary ori-
ented distances within these points or the overall
included volume.

For tree parameter estimation SfM top-down ap-
proaches of leafy trees (DaNDOISs, ELLIS 2010; TAO
et al. 2011; FriTz et al. 2013; ZARCO-TEJADA et
al. 2014; Diaz-VARELA et al. 2015) and SfM side-
on approaches of bald trees (MILLER et al. 2015)
have been applied. SfM at bald trees allows the re-
construction of pure wood and thus supposingly
achieves high accuracies. However by now pure
wood reconstruction has only been applied suc-
cessfully to single trees (MILLER et al. 2015). SfM
at leafy trees for height estimations or coarse vol-
ume models is less accurate but can be applied to
grouped trees as well (DaNDoOI1s, ELLIS 2010; FrRiTZ
et al. 2013; ZARCO-TEJADA et al. 2014).

Predicting models based on aerial images instead
of SftM volume models would be faster process-
able and consequently more economical. SEIDEL
et al. (2015) has used canopy area and age to pre-
dict dry mass in linear forest objects in Germany.
In this study the canopy areas were derived from
aerial images. The growth rate was assumed to be
0.7 kg-m=2yr1.

The aim of the present study was to compare the
predicting potential of these two different non-de-
structive approaches. The first approach used can-
opy area and mean age at stump level as predicting
variables and the second approach used volume of
vegetation cover based on SfM as predicting vari-
able. The data of both approaches were used sepa-
rately to predict reference dry mass (ground truth).
Afterwards the predicting potentials of both ap-
proaches were compared.

MATERIAL AND METHODS

Study objects. Data for the present study were
sampled in 2016, 2017 and 2018 at eleven linear
forest objects in Schleswig-Holstein, Germany.
Average yearly temperature in Schleswig-Holstein
is around 10°C and annual precipitation is around
750 mm. All objects were in an altitude of approxi-
mately 30 m a.s.L

These objects consisted of five different hedge
banks (objects 1 to 5) and six roadside plantings (ob-
jects 6 to 11). A representative length of 100 m was
selected for each object. The 100 m objects were di-
vided into 10 segments of 10 m each. A Real Time
Kinematic GPS (Trimble Ag 442 with 2 cm horizon-
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tal accuracy) recorded the GPS coordinates of the
segments’ corners.

Sampled hedge banks and roadside plantings had
diverse species compositions. Some of the hedge
banks had a large proportion of blackthorn (Prunus
spinosa Linnaeus) other objects were dominated
by willow (genus Salix Linnaeus), sycamore (Acer
pseudoplatanus Linnaeus) or common hornbeam
(Carpinus betulus Linnaeus). Most frequent count-
ed shoots of all segments were blackthorn, fly hon-
eysuckle (Lonicera xylosteumn Linnaeus) and com-
mon hazel (Corylus avellane Linnaeus).

Reference data. In the beginning of 2017 (Ob-
jects 1, 2, 6, 7, 8) and 2018 (Objects 3, 4, 5, 9, 10,
11) shrubs and trees of each segment were felled,
chopped to wood-chips and weighed segment-
wise. The vegetation was without leaves at that
time. Due to local conditions the segments had to
be weighted on four different scales (Table 1).

From each segment three samples of wood-chips
(approximately 5 | each) were taken. These samples
were dried at 103°C to constant weight according to
DIN 52183 for dry mass content estimation. Thus
the dry mass of every segment could be estimated.

Usually not all trees are felled in hedge banks and
roadside plantings. Some trees are left standing for
ecological reasons. However these trees were part
of the SfM-volume models and aerial images. Con-
sequently the dry masses of the trees left standing
were estimated with species-specific allometric
equations based on DBH provided by Z1ANis et al.
(2005). These dry masses were added to the har-
vested dry masses to gain the total reference dry
masses per segment.

Biomass estimation based on canopy area and
age. The following prediction model is based on the
idea that age could potentially be a substitute for tree
height and that the canopy area could potentially be
a substitute for basal area. Basal area in forest ecolo-
gy is the sum of the area of all stems at breast height.
Canopy area in the present study is the area covered
by the combined canopy of the segment.

Consequently the Eq. 1.2 approximates the Eq. 1.1:

Dry mass = a x tree height x basal area (1.1)

Dry mass = b x age x canopy areca (1.2)

The canopy areas of the segments were estimated
using aerial images recorded in 2016 provided from
the state government of Schleswig-Holstein. These
images had a pixel resolution of 20 cm x 20 cm on
ground. The canopy outlines of all 110 segments
were manually digitized and canopy areas were cal-
culated (Fig. 1). This process was performed in QGIS
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Table 1. Different scales used for weighing

Hedge banks Roadside plantings
scale No. 1 2
object 1-2 6-8
scale telescopic handler permanent truck scales
2017 minimum load used (t) 0.7 6.9*
maximum load used (t) 1.2 27.7*
resolution (kg) 50 20
maximum possible load (t) 5 50
scale No. 3 4
object 3-5 9-11
scale mobile truck scales permanent truck scales
2018 minimum load used (t) 1.1% 6.5%
maximum load used (t) 2.2% 25.7%
resolution (kg) 10 20
maximum possible load (t) 20 50

*weights include tare

(Version 2.18.22, 2017). The ages of the objects were
estimated after harvesting by annual ring counting
of 20 representative stumps per object. The mean
age per object was used as object age. This mean rep-
resents the period since the last harvest and there-
fore the time duration for biomass growth used in
Eq. 1.2. SEIDEL et al. (2015) recommended to esti-
mate dry mass of linear forest objects based on can-
opy area and age using Eq. 1.2 with 0.7 kgm2yr~ as
prefactor b.

Two models were generated. In Model 1.2a,
0.7 kgm=yr~! was used as b in Eq. 1.2. For Model
1.2b the prefactor b was estimated anew using the
110 data points of the present study.

Biomass estimation based on SfM volume of
vegetation cover. For image acquisition an un-

Fig. 1. Manually digitized hedge bank and canopy area
calculation in Object 1
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manned aerial vehicle — UAV (HT-8 C180; Height-
Tech, Germany) equipped with a Sony Alpha 7
camera (Sony Corporation, Japan), 24 mega pixel,
30 mm lens (Zeiss, Germany) was used. This cam-
era and lens combination resulted in a pixel size of
6 mm x 6 mm at a distance of 30 m. The octocop-
ter was programmed and flew automatically above
and along each object in multiple different heights
(LINGNER et al. 2018). At the hedge banks the octo-
copter could fly above the object and on both sides.
However at the roadside plantings the octocopter
could only fly on the opposite side of the road and
above the object due to safety reasons.

The UAV flights were performed in the second
half of 2016 (Objects 1, 2, 6, 7, 8) and in the second
half of 2017 (Objects 3, 4, 5, 9, 10, 11) with most of
the trees still leafy.

Approximately every two metres a photo was
taken. This resulted in an overlap of more than 90%
between collected images. Images were processed
in Agisoft Photoscan (Version 1.2.6, 2016) for point
cloud generation (alignment: highest; dense cloud:
lowest). Then these point clouds were processed in
Matlab (Version R2017a). The point cloud process-
ing in Matlab included ground level estimation and
volume calculation. For volume calculation square
tiles with a uniform tile edge length (see below)
were fitted at the estimated ground level. These tiles
were used as base for pillars that reached from the
estimated ground level to the highest point above
the specific tile (Fig. 2). Square tiles with different
edge lengths were tested on a sub sample to find
the best suitable tile edge length. Tested tile edge
lengths were d/n (n = 1...15) to fit exactly into the
segments with a length of d = 10 m.
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Fig. 2. Coloured point cloud of roadside planting (700,000

points) (a), point cloud with estimated ground level and

pillars (2 m x 2 m at ground level) for volume calculation
(b) (distances in metres)

Two different models were generated for biomass
estimation based on volume. In Model 2.1, the vol-
umes of the pillars V, were simply added segment
wise yielding the total volume SV, =%V, of seg-
ment j. These segment volumes SV, were modelled
against reference dry mass; (kg) in Eq. 2.1 to esti-
mate the coefficient c. Model 2.1 was generated for
every tested tile edge length to find the best fitting
tile edge length based on relative root mean square
error (rRMSE). This best fitting tile edge length was
used for further analysis (Model 2.1 and 2.2):

Dry mass, =cxSV, (2.1)

For Model 2.2, Eq. 2.2 was fitted to obtain estimates
for factor d and exponent f. This equation allows for
different volume specific densities depending on
pillar height. This could possibly rather represent
the natural growth habit of trees then Eq. 2.1. Due
to the fact that higher trees usually have a thicker
stem than smaller trees, a higher pillar probably has
a higher wood-air-ratio than a smaller pillar:

Dry mass; = d Zi:‘mber " mj(V )f

i

(2.2)

where:
V, — pillar volume (m3),
j - segment number.

Differentplotsizes. When the trees were weighed
segment-wise (10 m) it was often hard to decide to
which segment a tree belonged. Especially at the
edges of the segments it was challenging to assign
all trees to a distinct segment. Plus, if the crown of
a tree covered parts of two adjacent segments the
tree was not split apart. These edge errors resulted
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by assigning trees to the wrong segment probably
resulted in wrong reference data. It was tried to de-
crease these edge errors test-wise by using larger
plot sizes for both Model 1.2b (canopy area & age)
and Model 2.1 (volume). Compared additional plot
lengths were 20, 50, and 100 m when combining 2,
5, or 10 adjacent segments respectively.

To evaluate the accuracy of both biomass esti-
mation approaches for applications in the field the
95% confidence intervals of the standard deviation
(CI,) were calculated. These two CI  were cal-
culated using the residuals of Model 1.2b and 2.1.
Afterwards each CI , was converted into a relative
CI, by dividing it by the mean reference dry bio-
mass. For this calculation the plots with a length
of 100 m were used since these plot sizes are more
common at applications in the field.

Data handling, statistics and graphics. The ab-
solute root mean square error (RMSE) or rRMSE
is the standard accuracy estimate for the compari-
son of different methods of biomass estimation
(SEGURA et al. 2006; HYDE et al. 2007; POPESCU et
al. 2011). Consequently this accuracy estimate was
used in the present study as well. The formula for
the rRMSE (%) is presented in Eq. 3:

1 n A \2
1{;2[:1(%' _yi)
rRMSE = — (3)

y

where:
y — mean value,
y — expected value.

Data handling, statistics and graphics were per-
formed in R software (Version 3.2.1, 2015) using
the packages xIsx (Version 0.5.7, 2014), plyr (Ver-
sion 1.8.4, 2011), mgcv (Version 1.8-24, 2018)
(Woop 2011) and ggplot2 (Version 2.1.0, 2009)
(WickHAM 2009).

RESULTS
Reference data

Fresh biomass per segment varied between 380
and 8,380 kg and dry biomass content varied be-
tween 47 and 66%. This resulted in harvested dry
biomasses between 237 and 4,649 kg per 10 m seg-
ment (Fig. 3a). In total, 66 trees with a DBH larger
than 10 cm were left standing. Their dry masses
were estimated with equations from Z1ANIs et al.
(2005) and added to the harvested dry biomasses
to gain reference dry biomasses (Fig. 3b). These
reference dry biomasses varied between 243 and
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Fig. 3. Harvested dry biomass (a), reference dry biomass — harvested dry biomass plus estimated dry biomass of trees

left standing (b) of eleven linear forest objects

4,800 kg per segment (10 m). The mean estimated
dry mass of the trees left standing per segment was
around 9% of the reference dry mass.

Biomass estimation
based on canopy area and age

Digitizes canopy areas per segment varied be-
tween 30 and 258 m? The mean age of the objects
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ranged from 13 to 32 years. Ages and canopy ar-
eas are displayed in Fig. 4. Estimated prefactor b in
Model 1.2b was 0.44 kg-m~2yrL.

Fig. 5 shows both the estimated dry biomass
with a prefactor b of 0.7 kg-m~2yr~! (Model 1.2a)
and the estimated dry biomass with the calculated
prefactor b of 0.44 kg-m~2yr~! (Model 1.2b). Model
1.2a resulted in an rRMSE of 82% and Model 1.2b
resulted in an rRMSE of 52%. An overview of the
models is presented in Table 2.
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Fig. 4. Canopy area of segments — digitized in aerial images (a), age of objects — ascertained by annual ring counting (b);
the points represent means and the error bars represent standard errors, sample size = 20 for each object
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Fig. 5. Predicted dry biomass (Eq. 1.2) with two different growth factors vs. reference dry biomass: 0.7 kg-m=2yr~! (a),
0.44 kg-m~2.yr~! (b); the 1:1 line is also displayed and represents an ideal fit
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Table 2. Models with equations, parameters, relative root mean square error (rRMSE) and 95% confidence intervals

of the standard deviation (CI) values

Model Equation rRMSE (%) CI, at 100 m (%)
1.2a Dry mass = 0.70kg'm >-yr™' x age x canopy area 82

1.2b Dry mass = 0.44kg'm~-yr™' x age x canopy area 52 82

2.1 Dry mass, =1.14kgm™ xSV, 31 33

2.2 Dry mass, =028 """ (1) 30

dry mass in kg, j — segment number, SV, - total volume, V; — pillar volume (m?)

Biomass estimation
based on SfM volume

The best fitting tile edge length was found around
2 m. Edge lengths smaller or larger than 2 m resulted
in a larger rRMSE. When using this tile edge length
for further analysis the calculated volumes per 10 m
segment varied between 286 and 3,088 m? (Fig. 6). The
estimate ¢ in Eq. 2.1 (Model 2.1) was 1.14 kg-m~3. The
estimates d and fin Eq. 2.2 (Model 2.2) were 0.28 and
1.38 respectively. Model 2.1 resulted in an rRMSE of
31% and Model 2.2 resulted in an rRMSE of 30%. The
data points of both models are presented in Fig. 7. An
overview of the models is presented in Table 2.
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Fig. 6. Volume calculations based on structure from motion
of eleven linear forest objects

Different plot sizes

Data points of the larger plot sizes are presented
in Fig. 8. The rRMSE values of the three additional
plot lengths of the area and age model were 47% at
20 m, 43% at 50 m and 42% at 100 m. The rRMSE
values of the three additional plot lengths of the
SfM model were 27% at 20 m, 19% at 50 m and 16%
at 100 m. At the 100 m plot sizes the residuals of
Model 1.2b resulted in a relative 95% Cl, of 82%
and the residuals of Model 2.1 resulted in a relative
95% Clg, 33%.

DISCUSSION
Data acquisition

Linear forest objects sampled were different in
width, orientation, age and species composition
to cover the broad scope of linear forest objects in
Schleswig-Holstein. The ages of the objects (13 to
32 years) cover the broad scope of ages at which
linear forest objects are harvested in Schleswig-
Holstein (Ministerium fiir Energiewende, Land-
wirtschaft, Umwelt und ldndliche Réume des
Landes Schleswig-Holstein 2017). The species
compositions as well were a good representation of
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Fig. 7. Volume vs. reference dry biomass (Eq. 2.1 with a slope of ¢ = 1.14), the line presents the linear model (a), predicted
dry biomass vs. reference dry biomass (Eq. 2.2), the 1:1 line is displayed and represents an ideal fit (b)
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Canopy area and age
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Fig. 8. Predicted dry masses (a, c, e), volumes (b, d, f) vs. reference dry masses at different plot sizes — 20 m (a, b), 50 m
(c, d), 100 m (e, f) — gained by combining several adjacent plots

linear forest objects in Schleswig-Holstein (EIGNER
1982). As a consequence the results of this study
are likely to be applicable to all linear forest objects
in Schleswig-Holstein. However the results might
be less applicable to linear forest objects outside of
Schleswig-Holstein.

Predicting potential

Accuracy of canopy area and age as predicting
variables. Dry biomass estimation based on aerial
images resulted in an rRMSE of 82% (Model 1.2a)
and 52% (Model 1.2b). The spread of the data is the
same in both models but the data points in Model
1.2a are further away from an ideal fit presented by
a relation of 1:1. This difference explains the sub-
stantially different rRMSE values.
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Model 1.2a and Model 1.2b are predicting al-
most the same dry biomass for every segment in a
particular object (see the horizontal accumulation
of points in Fig. 5). This pattern can in part be ex-
plained by the fact that for all segments in a par-
ticular object the same age was assumed. This as-
sumption is rationally since usually an entire object
is felled at one time. Consequently, all segments of
an object have the same age when regrowing.

At larger plot sizes this method resulted in an
rRMSE of 42%. The rRMSE values in literature for
biomass estimation based on aerial images varied
between 8% (MUUKKONEN, HEISKANEN 2007), 14%
(PLoTON et al. 2012) and 40% (MUUKKONEN, HEIS-
KANEN 2005). However reference data in these stud-
ies were not gained by weighing but by less accurate
techniques like allometric equations. So the rRMSE
of these literature studies is not directly comparable
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to the present study since it is likely that a data set
with a non-accurate reference method is worse than
a data set with weighted reference values.

The present study could not confirm a growth rate
of 0.7 kg-m~2yr~! as recommended by SEIDEL et al.
(2015). The calculated prefactor of 0.44 kg-m=2yr!
in the present study was a lot smaller. SEIDEL et al
(2015) guessed this prefactor for central Germany.
The present study took place in northern Germa-
ny. WALTHER and BERNATH (2009) recommend a
growth rate of 0.5 kg-m=2-yr~! for Switzerland. It is
likely that this prefactor is different depending on
climate, nutrition, species composition etc.

Accuracy of volume as predicting variable. Dry
biomass estimation based on SfM-volume resulted in
an rRMSE of 30% (Model 2.2). At larger plot sizes this
method resulted in an rRMSE of 16%. This rIRMSE is
in the range of the rRMSE from MILLER et al. (2015)
who have used SfM to calculate the volume of thirty
bald single trees and received an rRMSE of 19%. In
Miller’s study the single trees were photographed
side-on all around. DaANDoOIS and ELLis (2010) have
used SfM for biomass estimation at a small forest and
received an rRMSE of 54%. However, due to the large
spatial scale they have used top-down photos only.
Reference values were gained by allometric equa-
tions. Consequently the rRMSE values should be
compared with caution here as well.

The coefficient ¢ was estimated to be 1.14 kg-m~3.
Mean dry weight of the wood in hedge banks and
roadside plantings in northern Germany is around
500 kg-m~3 (VERSCHEURE 1998). Consequently the
wood-ratio in a cubic metre of volume of vegeta-
tion cover was at 0.2%.

The rRMSE of Model 2.2 was not much lower than
the rRMSE of Model 2.1. The additional parameter
for volume height did not improve the model no-
tably. However the exponent was estimated to be
larger than 1. Consequently higher pillars appear
to have a higher wood-air-ratio than smaller pillars.

Comparison of accuracies. In the present study
the rRMSE of the SM-volume approach was small-
er than the rRMSE of the approach based on aerial
images. It is not surprising that biomass is better
described by volume than by canopy area since the
canopy area in the optical images has no informa-
tion about height. To substitute the height infor-
mation age was added to the canopy area model
(Model 1.2a and 1.2b). However, the canopy area
model was still worse than the volume model. Ap-
parently, age is no equal substitution for height at
the scale of the present study.

Error analysis. The error of prediction is a com-
bination of:
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(i) the error of the reference dry biomass;

(ii) the error of the measurements (area and age or
volume);

(iii) the heterogenetic allocation of dry mass in linear
forest objects.

Reference dry biomasses were gained by weigh-
ing after harvesting. This is the most accurate
method possible. Allometric equations based on
DBH were used to predict the dry biomass of trees
left standing. However, allometric equations from
Z1ANIS et al. (2005) are mainly from forest habitats.
Consequently this dry biomass might be estimated
inaccurate, since trees in a linear forest object have
more light available and consequently are able to
produce more biomass.

It was decided to stick to the equations from Z1a-
NIs et al. (2005) for the following reasons:

(i) A tree that produces more biomass is likely to
have a thicker stem as well. The equations used
based on DBH. As a consequence the additional
biomass would be taken into account;

(i) Species-specific allometric equations for Euro-
pean linear forest objects are rare in literature.
Most equations are for forests or single trees.
The width of the linear forest objects in the
present study ranged from 7 m (hedge bank) to
22 m (roadside planting). The conditions in the
centre of the objects are closer to a forest than to
a single tree. Consequently equations for single
trees would be less suitable.

Still, segments with estimated dry masses of trees
left standing show a comparably bad fit in in Figs 5
and 7. The segments with the largest estimated dry
masses were Segment 2, 7 and 10 of Object 4. The
dry masses of these trees appear to be estimated
too high.

Errors in area, age and volume estimation are
assumed to be comparably small. Independent
volume models were generated in different condi-
tions and seasons for another project (unpublished
data). It was shown that the calculated volumes had
a high grade of reproducibility.

The allocation of dry mass was very heteroge-
netic in the sampled linear forest objects. Some
segments had a very dense vegetation, others seg-
ments had large gaps in the centre. Some segments
had a large part of small shrubs while others mainly
consisted of a few large trees.

This heterogeneity probably had the largest im-
pact on the error of prediction. The estimated
dry masses of the trees left standing are assumed
to have the second largest impact. The errors in
area, age and volume estimation are assumed to be
negligible.
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Different plot sizes. The rRMSE decreased con-
siderably with increasing plot sizes. This effect is
probably in part due to decreased edge errors. How-
ever another reason surly is that errors are averaged
in larger plot sizes and consequently disguised.

Applicability

In the present study the age of the objects was
ascertained by annual ring counting after harvest-
ing. Drill cores gained by growth ring drills could
deliver this information semi-destructive. For an
absolute non-invasive method this needs to be done
in a different way (e.g. exploration of historic data).

Model 1.2b resulted in a relative 95% Cl,, of 82%.
At a dry biomass of 10 t from typical 100 m hedge
bank this CI, would result in a range between 2
and 18 t. Model 2.1 resulted in a relative 95% ClI,
of 33%. At a dry biomass of 10 t this CI, would
result in a range between 7 and 13 t. The error of
the models using aerial images is twice that high
compared to the error of the volume models. Con-
sequently, volume models should be preferred over
models using optical images if smaller errors are
essential.
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