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Abstract

Lingner S., Thiessen E., Hartung E. (2018): Aboveground biomass estimation in linear forest objects: 2D- vs. 
3D-data. J. For. Sci., 64: 523–532.

Wood-chips of linear forest objects (hedge banks and roadside plantings) are used as sustainable energy supply in 
wood-chip heating systems. However, wood yield of linear forest objects is very heterogeneous and hard to estimate 
in advance. The aim of the present study was to compare the dry mass estimation potentials of two different non-
destructive data: (i) Canopy area (derived from aerial images) and mean age at stump level (2D), (ii) volume of veg-
etation cover based on structure from motion (SfM) via unmanned aerial vehicle (3D). These two types of data were 
separately used to predict reference dry mass (ground truth) in eleven objects (5 hedge banks and 6 roadside plant-
ings) in Schleswig-Holstein, Germany. The predicting potentials were compared afterwards. The reference dry mass 
was ascertained by weighing after harvesting and drying samples to constant weight. The model predicting reference 
dry mass using canopy area and mean age at stump level achieved a relative root mean square error (RMSE) of 52% 
(42% at larger combined plot sizes). The model predicting reference dry mass using SfM volume achieved a relative 
RMSE of 30% (16% at larger combined plot sizes). This result indicates that biomass is better described by volume of 
vegetation cover than by canopy area and age.
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According to the European Renewable Energy 
Directive (2009/28/EG) renewable energy is sup-
posed to cover at least 20% of the gross energy 
consumption in 2020 within the European Union. 
In Germany, the amount of woody biomass used 
as a source for energy has already increased during 
the last decades (Mantau 2012). The future de-
mand for woody biomass could in part be supplied 
by existing linear forest objects (hedge banks and 
roadside plantings) (Isensee et al. 2000; Seidel et 
al. 2015).

The demand of wood-chips implies the need for 
woody biomass predicting models. Biomass pre-
dicting models could help with logistical planning 
and economical estimations. Biomass predictions 

based on allometric equations were already com-
pared to biomass predictions based on Structure 
from Motion (SfM) in a previous study (Lingner 
et al. 2018). Dry mass predictions based on SfM 
turned out to be comparably accurate. However 
SfM is time consuming and technically demanding.

SfM is a remote sensing technique that constructs 
3D point clouds from numerous overlapping pho-
tos. The underlying algorithms use methods of 
computer vision and photogrammetry. These algo-
rithms are looking for key points in individual pho-
tos and are matching these points with associated 
key points in other photos. Thus, the camera posi-
tion and its calibration plus the location of the key 
points are estimated. Afterwards these key points 
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are converted into a 3D point cloud (Snavely et al. 
2007; Turner et al. 2012). Analysing these point 
clouds enables e.g. the calculation of arbitrary ori-
ented distances within these points or the overall 
included volume.

For tree parameter estimation SfM top-down ap-
proaches of leafy trees (Dandois, Ellis 2010; Tao 
et al. 2011; Fritz et al. 2013; Zarco-Tejada et 
al. 2014; Díaz-Varela et al. 2015) and SfM side-
on approaches of bald trees (Miller et al. 2015) 
have been applied. SfM at bald trees allows the re-
construction of pure wood and thus supposingly 
achieves high accuracies. However by now pure 
wood reconstruction has only been applied suc-
cessfully to single trees (Miller et al. 2015). SfM 
at leafy trees for height estimations or coarse vol-
ume models is less accurate but can be applied to 
grouped trees as well (Dandois, Ellis 2010; Fritz 
et al. 2013; Zarco-Tejada et al. 2014).

Predicting models based on aerial images instead 
of SfM volume models would be faster process-
able and consequently more economical. Seidel 
et al. (2015) has used canopy area and age to pre-
dict dry mass in linear forest objects in Germany. 
In this study the canopy areas were derived from 
aerial images. The growth rate was assumed to be 
0.7 kg·m–2·yr–1.

The aim of the present study was to compare the 
predicting potential of these two different non-de-
structive approaches. The first approach used can-
opy area and mean age at stump level as predicting 
variables and the second approach used volume of 
vegetation cover based on SfM as predicting vari-
able. The data of both approaches were used sepa-
rately to predict reference dry mass (ground truth). 
Afterwards the predicting potentials of both ap-
proaches were compared.

MATERIAL AND METHODS

Study objects. Data for the present study were 
sampled in 2016, 2017 and 2018 at eleven linear 
forest objects in Schleswig-Holstein, Germany. 
Average yearly temperature in Schleswig-Holstein 
is around 10°C and annual precipitation is around 
750 mm. All objects were in an altitude of approxi-
mately 30 m a.s.l.

These objects consisted of five different hedge 
banks (objects 1 to 5) and six roadside plantings (ob-
jects 6 to 11). A representative length of 100 m was 
selected for each object. The 100 m objects were di-
vided into 10 segments of 10 m each. A Real Time 
Kinematic GPS (Trimble Ag 442 with 2 cm horizon-

tal accuracy) recorded the GPS coordinates of the 
segments’ corners.

Sampled hedge banks and roadside plantings had 
diverse species compositions. Some of the hedge 
banks had a large proportion of blackthorn (Prunus 
spinosa Linnaeus) other objects were dominated 
by willow (genus Salix Linnaeus), sycamore (Acer 
pseudoplatanus Linnaeus) or common hornbeam 
(Carpinus betulus Linnaeus). Most frequent count-
ed shoots of all segments were blackthorn, fly hon-
eysuckle (Lonicera xylosteum Linnaeus) and com-
mon hazel (Corylus avellane Linnaeus).

Reference data. In the beginning of 2017 (Ob-
jects 1, 2, 6, 7, 8) and 2018 (Objects 3, 4, 5, 9, 10, 
11) shrubs and trees of each segment were felled, 
chopped to wood-chips and weighed segment-
wise. The vegetation was without leaves at that 
time. Due to local conditions the segments had to 
be weighted on four different scales (Table 1).

From each segment three samples of wood-chips 
(approximately 5 l each) were taken. These samples 
were dried at 103°C to constant weight according to 
DIN 52183 for dry mass content estimation. Thus 
the dry mass of every segment could be estimated.

Usually not all trees are felled in hedge banks and 
roadside plantings. Some trees are left standing for 
ecological reasons. However these trees were part 
of the SfM-volume models and aerial images. Con-
sequently the dry masses of the trees left standing 
were estimated with species-specific allometric 
equations based on DBH provided by Zianis et al. 
(2005). These dry masses were added to the har-
vested dry masses to gain the total reference dry 
masses per segment.

Biomass estimation based on canopy area and 
age. The following prediction model is based on the 
idea that age could potentially be a substitute for tree 
height and that the canopy area could potentially be 
a substitute for basal area. Basal area in forest ecolo-
gy is the sum of the area of all stems at breast height. 
Canopy area in the present study is the area covered 
by the combined canopy of the segment.

Consequently the Eq. 1.2 approximates the Eq. 1.1:

Dry mass  tree height basal areaa   � (1.1)

Dry mass  age canopy areab   � (1.2)

The canopy areas of the segments were estimated 
using aerial images recorded in 2016 provided from 
the state government of Schleswig-Holstein. These 
images had a pixel resolution of 20 cm × 20 cm on 
ground. The canopy outlines of all 110 segments 
were manually digitized and canopy areas were cal-
culated (Fig. 1). This process was performed in QGIS 



J. FOR. SCI., 64, 2018 (12): 523–532	 525

(Version 2.18.22, 2017). The ages of the objects were 
estimated after harvesting by annual ring counting 
of 20 representative stumps per object. The mean 
age per object was used as object age. This mean rep-
resents the period since the last harvest and there-
fore the time duration for biomass growth used in 
Eq. 1.2. Seidel et al. (2015) recommended to esti-
mate dry mass of linear forest objects based on can-
opy area and age using Eq. 1.2 with 0.7 kg·m–2·yr–1 as 
prefactor b.

Two models were generated. In Model 1.2a, 
0.7 kg·m–2·yr–1 was used as b in Eq. 1.2. For Model 
1.2b the prefactor b was estimated anew using the 
110 data points of the present study.

Biomass estimation based on SfM volume of 
vegetation cover. For image acquisition an un-

manned aerial vehicle – UAV (HT-8 C180; Height-
Tech, Germany) equipped with a Sony Alpha 7 
camera (Sony Corporation, Japan), 24 mega pixel, 
30 mm lens (Zeiss, Germany) was used. This cam-
era and lens combination resulted in a pixel size of 
6 mm × 6 mm at a distance of 30 m. The octocop-
ter was programmed and flew automatically above 
and along each object in multiple different heights 
(Lingner et al. 2018). At the hedge banks the octo-
copter could fly above the object and on both sides. 
However at the roadside plantings the octocopter 
could only fly on the opposite side of the road and 
above the object due to safety reasons.

The UAV flights were performed in the second 
half of 2016 (Objects 1, 2, 6, 7, 8) and in the second 
half of 2017 (Objects 3, 4, 5, 9, 10, 11) with most of 
the trees still leafy.

Approximately every two metres a photo was 
taken. This resulted in an overlap of more than 90% 
between collected images. Images were processed 
in Agisoft Photoscan (Version 1.2.6, 2016) for point 
cloud generation (alignment: highest; dense cloud: 
lowest). Then these point clouds were processed in 
Matlab (Version R2017a). The point cloud process-
ing in Matlab included ground level estimation and 
volume calculation. For volume calculation square 
tiles with a uniform tile edge length (see below) 
were fitted at the estimated ground level. These tiles 
were used as base for pillars that reached from the 
estimated ground level to the highest point above 
the specific tile (Fig. 2). Square tiles with different 
edge lengths were tested on a sub sample to find 
the best suitable tile edge length. Tested tile edge 
lengths were d/n (n = 1…15) to fit exactly into the 
segments with a length of d = 10 m.

Table 1. Different scales used for weighing

Hedge banks Roadside plantings

2017

scale No. 1 2
object 1–2 6–8
scale telescopic handler permanent truck scales

minimum load used (t) 0.7 6.9*
maximum load used (t) 1.2 27.7*

resolution (kg) 50 20
maximum possible load (t) 5 50

2018

scale No. 3 4
object 3–5 9–11
scale mobile truck scales permanent truck scales

minimum load used (t) 1.1* 6.5*
maximum load used (t) 2.2* 25.7*

resolution (kg) 10 20
maximum possible load (t) 20 50

*weights include tare

Fig. 1. Manually digitized hedge bank and canopy area 
calculation in Object 1
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Two different models were generated for biomass 
estimation based on volume. In Model 2.1, the vol-
umes of the pillars Vi were simply added segment 
wise yielding the total volume SVj = ΣVi of seg-
ment j. These segment volumes SVj were modelled 
against reference dry massj (kg) in Eq. 2.1 to esti-
mate the coefficient c. Model 2.1 was generated for 
every tested tile edge length to find the best fitting 
tile edge length based on relative root mean square 
error (rRMSE). This best fitting tile edge length was 
used for further analysis (Model 2.1 and 2.2):

Dry mass SVj jc  � (2.1)

For Model 2.2, Eq. 2.2 was fitted to obtain estimates 
for factor d and exponent f. This equation allows for 
different volume specific densities depending on 
pillar height. This could possibly rather represent 
the natural growth habit of trees then Eq. 2.1. Due 
to the fact that higher trees usually have a thicker 
stem than smaller trees, a higher pillar probably has 
a higher wood-air-ratio than a smaller pillar:

 Number  in 

1
Dry mass   V j f

j ii
d V


  � (2.2)

where:
Vi	 – pillar volume (m3),
j	 – segment number.

Different plot sizes. When the trees were weighed 
segment-wise (10 m) it was often hard to decide to 
which segment a tree belonged. Especially at the 
edges of the segments it was challenging to assign 
all trees to a distinct segment. Plus, if the crown of 
a tree covered parts of two adjacent segments the 
tree was not split apart. These edge errors resulted 

by assigning trees to the wrong segment probably 
resulted in wrong reference data. It was tried to de-
crease these edge errors test-wise by using larger 
plot sizes for both Model 1.2b (canopy area & age) 
and Model 2.1 (volume). Compared additional plot 
lengths were 20, 50, and 100 m when combining 2, 
5, or 10 adjacent segments respectively.

To evaluate the accuracy of both biomass esti-
mation approaches for applications in the field the 
95% confidence intervals of the standard deviation 
(CISD) were calculated. These two CISD were cal-
culated using the residuals of Model 1.2b and 2.1. 
Afterwards each CISD was converted into a relative 
CISD by dividing it by the mean reference dry bio-
mass. For this calculation the plots with a length 
of 100 m were used since these plot sizes are more 
common at applications in the field.

Data handling, statistics and graphics. The ab-
solute root mean square error (RMSE) or rRMSE 
is the standard accuracy estimate for the compari-
son of different methods of biomass estimation 
(Segura et al. 2006; Hyde et al. 2007; Popescu et 
al. 2011). Consequently this accuracy estimate was 
used in the present study as well. The formula for 
the rRMSE (%) is presented in Eq. 3:

 2

1

1

rR SE  
ˆ

M

n
i ii

y y
n

y






� (3)

where:
y–	– mean value,
ŷ	 – expected value.

Data handling, statistics and graphics were per-
formed in R software (Version 3.2.1, 2015) using 
the packages xlsx (Version 0.5.7, 2014), plyr (Ver-
sion 1.8.4, 2011), mgcv (Version 1.8-24, 2018) 
(Wood 2011) and ggplot2 (Version 2.1.0, 2009) 
(Wickham 2009).

RESULTS

Reference data

Fresh biomass per segment varied between 380 
and 8,380 kg and dry biomass content varied be-
tween 47 and 66%. This resulted in harvested dry 
biomasses between 237 and 4,649 kg per 10 m seg-
ment (Fig. 3a). In total, 66 trees with a DBH larger 
than 10 cm were left standing. Their dry masses 
were estimated with equations from Zianis et al. 
(2005) and added to the harvested dry biomasses 
to gain reference dry biomasses (Fig. 3b). These 
reference dry biomasses varied between 243 and 

Fig. 2. Coloured point cloud of roadside planting (700,000 
points) (a), point cloud with estimated ground level and 
pillars (2 m × 2 m at ground level) for volume calculation 
(b) (distances in metres)

(a)�

(b)
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4,800 kg per segment (10 m). The mean estimated 
dry mass of the trees left standing per segment was 
around 9% of the reference dry mass.

Biomass estimation 
based on canopy area and age

Digitizes canopy areas per segment varied be-
tween 30 and 258 m2. The mean age of the objects 

ranged from 13 to 32 years. Ages and canopy ar-
eas are displayed in Fig. 4. Estimated prefactor b in 
Model 1.2b was 0.44 kg·m–2·yr–1.

Fig. 5 shows both the estimated dry biomass 
with a prefactor b of 0.7 kg·m–2·yr–1 (Model 1.2a) 
and the estimated dry biomass with the calculated 
prefactor b of 0.44 kg·m–2·yr–1 (Model 1.2b). Model 
1.2a resulted in an rRMSE of 82% and Model 1.2b 
resulted in an rRMSE of 52%. An overview of the 
models is presented in Table 2.

Fig. 3. Harvested dry biomass (a), reference dry biomass – harvested dry biomass plus estimated dry biomass of trees 
left standing (b) of eleven linear forest objects
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Fig. 4. Canopy area of segments – digitized in aerial images (a), age of objects – ascertained by annual ring counting (b); 
the points represent means and the error bars represent standard errors, sample size = 20 for each object
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Fig. 5. Predicted dry biomass (Eq. 1.2) with two different growth factors vs. reference dry biomass: 0.7 kg·m–2·yr–1 (a), 
0.44 kg·m–2·yr–1 (b); the 1:1 line is also displayed and represents an ideal fit
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Biomass estimation 
based on SfM volume

The best fitting tile edge length was found around 
2 m. Edge lengths smaller or larger than 2 m resulted 
in a larger rRMSE. When using this tile edge length 
for further analysis the calculated volumes per 10 m 
segment varied between 286 and 3,088 m3 (Fig. 6). The  
estimate c in Eq. 2.1 (Model 2.1) was 1.14 kg·m–3. The 
estimates d and f in Eq. 2.2 (Model 2.2) were 0.28 and 
1.38 respectively. Model 2.1 resulted in an rRMSE of 
31% and Model 2.2 resulted in an rRMSE of 30%. The 
data points of both models are presented in Fig. 7. An 
overview of the models is presented in Table 2.

Different plot sizes

Data points of the larger plot sizes are presented 
in Fig. 8. The rRMSE values of the three additional 
plot lengths of the area and age model were 47% at 
20 m, 43% at 50 m and 42% at 100 m. The rRMSE 
values of the three additional plot lengths of the 
SfM model were 27% at 20 m, 19% at 50 m and 16% 
at 100 m. At the 100 m plot sizes the residuals of 
Model 1.2b resulted in a relative 95% CISD of 82% 
and the residuals of Model 2.1 resulted in a relative 
95% CISD 33%.

DISCUSSION

Data acquisition

Linear forest objects sampled were different in 
width, orientation, age and species composition 
to cover the broad scope of linear forest objects in 
Schleswig-Holstein. The ages of the objects (13 to 
32 years) cover the broad scope of ages at which 
linear forest objects are harvested in Schleswig-
Holstein (Ministerium für Energiewende, Land-
wirtschaft, Umwelt und ländliche Räume des 
Landes Schleswig-Holstein 2017). The species 
compositions as well were a good representation of 

Table 2. Models with equations, parameters, relative root mean square error (rRMSE) and 95% confidence intervals 
of the standard deviation (CISD) values

Model Equation rRMSE (%) CISD at 100 m (%)

1.2a –2 –1Dry mass 0.70 kg·m ·yr age canopy area   82

1.2b –2 –1Dry mass 0.44 kg·m ·yr age canopy area   52 82

2.1 –3Dry mass 1.14 kg·m SVj j  31 33

2.2  Number  in 1.38

1
Dry mass 0.28  V j

j ii
V


  30

dry mass in kg, j – segment number, SVj – total volume, Vi – pillar volume (m3)

Fig. 6. Volume calculations based on structure from motion 
of eleven linear forest objects

Fig. 7. Volume vs. reference dry biomass (Eq. 2.1 with a slope of c = 1.14), the line presents the linear model (a), predicted 
dry biomass vs. reference dry biomass (Eq. 2.2), the 1:1 line is displayed and represents an ideal fit (b)
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linear forest objects in Schleswig-Holstein (Eigner 
1982). As a consequence the results of this study 
are likely to be applicable to all linear forest objects 
in Schleswig-Holstein. However the results might 
be less applicable to linear forest objects outside of 
Schleswig-Holstein.

Predicting potential

Accuracy of canopy area and age as predicting 
variables. Dry biomass estimation based on aerial 
images resulted in an rRMSE of 82% (Model 1.2a) 
and 52% (Model 1.2b). The spread of the data is the 
same in both models but the data points in Model 
1.2a are further away from an ideal fit presented by 
a relation of 1:1. This difference explains the sub-
stantially different rRMSE values.

Model 1.2a and Model 1.2b are predicting al-
most the same dry biomass for every segment in a 
particular object (see the horizontal accumulation 
of points in Fig. 5). This pattern can in part be ex-
plained by the fact that for all segments in a par-
ticular object the same age was assumed. This as-
sumption is rationally since usually an entire object 
is felled at one time. Consequently, all segments of 
an object have the same age when regrowing.

At larger plot sizes this method resulted in an 
rRMSE of 42%. The rRMSE values in literature for 
biomass estimation based on aerial images varied 
between 8% (Muukkonen, Heiskanen 2007), 14% 
(Ploton et al. 2012) and 40% (Muukkonen, Heis-
kanen 2005). However reference data in these stud-
ies were not gained by weighing but by less accurate 
techniques like allometric equations. So the rRMSE 
of these literature studies is not directly comparable 

Fig. 8. Predicted dry masses (a, c, e), volumes (b, d, f ) vs. reference dry masses at different plot sizes – 20 m (a, b), 50 m 
(c, d), 100 m (e, f ) – gained by combining several adjacent plots
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to the present study since it is likely that a data set 
with a non-accurate reference method is worse than 
a data set with weighted reference values.

The present study could not confirm a growth rate 
of 0.7 kg·m–2·yr–1 as recommended by Seidel et al. 
(2015). The calculated prefactor of 0.44 kg·m–2·yr–1 
in the present study was a lot smaller. Seidel et al 
(2015) guessed this prefactor for central Germany. 
The present study took place in northern Germa-
ny. Walther and Bernath (2009) recommend a 
growth rate of 0.5 kg·m–2·yr–1 for Switzerland. It is 
likely that this prefactor is different depending on 
climate, nutrition, species composition etc.

Accuracy of volume as predicting variable. Dry 
biomass estimation based on SfM-volume resulted in 
an rRMSE of 30% (Model 2.2). At larger plot sizes this 
method resulted in an rRMSE of 16%. This rRMSE is 
in the range of the rRMSE from Miller et al. (2015) 
who have used SfM to calculate the volume of thirty 
bald single trees and received an rRMSE of 19%. In 
Miller’s study the single trees were photographed 
side-on all around. Dandois and Ellis (2010) have 
used SfM for biomass estimation at a small forest and 
received an rRMSE of 54%. However, due to the large 
spatial scale they have used top-down photos only. 
Reference values were gained by allometric equa-
tions. Consequently the rRMSE values should be 
compared with caution here as well.

The coefficient c was estimated to be 1.14 kg·m–3. 
Mean dry weight of the wood in hedge banks and 
roadside plantings in northern Germany is around 
500 kg·m–3 (Verscheure 1998). Consequently the 
wood-ratio in a cubic metre of volume of vegeta-
tion cover was at 0.2%.

The rRMSE of Model 2.2 was not much lower than 
the rRMSE of Model 2.1. The additional parameter 
for volume height did not improve the model no-
tably. However the exponent was estimated to be 
larger than 1. Consequently higher pillars appear 
to have a higher wood-air-ratio than smaller pillars.

Comparison of accuracies. In the present study 
the rRMSE of the SfM-volume approach was small-
er than the rRMSE of the approach based on aerial 
images. It is not surprising that biomass is better 
described by volume than by canopy area since the 
canopy area in the optical images has no informa-
tion about height. To substitute the height infor-
mation age was added to the canopy area model 
(Model 1.2a and 1.2b). However, the canopy area 
model was still worse than the volume model. Ap-
parently, age is no equal substitution for height at 
the scale of the present study.

Error analysis. The error of prediction is a com-
bination of:

(i)	 the error of the reference dry biomass;
(ii)	� the error of the measurements (area and age or 

volume);
(iii)	�the heterogenetic allocation of dry mass in linear 

forest objects.
Reference dry biomasses were gained by weigh-

ing after harvesting. This is the most accurate 
method possible. Allometric equations based on 
DBH were used to predict the dry biomass of trees 
left standing. However, allometric equations from 
Zianis et al. (2005) are mainly from forest habitats. 
Consequently this dry biomass might be estimated 
inaccurate, since trees in a linear forest object have 
more light available and consequently are able to 
produce more biomass.

It was decided to stick to the equations from Zia-
nis et al. (2005) for the following reasons:
(i)	� A tree that produces more biomass is likely to 

have a thicker stem as well. The equations used 
based on DBH. As a consequence the additional 
biomass would be taken into account;

(ii)	�Species-specific allometric equations for Euro-
pean linear forest objects are rare in literature. 
Most equations are for forests or single trees. 
The width of the linear forest objects in the 
present study ranged from 7 m (hedge bank) to 
22 m (roadside planting). The conditions in the 
centre of the objects are closer to a forest than to 
a single tree. Consequently equations for single 
trees would be less suitable.

Still, segments with estimated dry masses of trees 
left standing show a comparably bad fit in in Figs 5 
and 7. The segments with the largest estimated dry 
masses were Segment 2, 7 and 10 of Object 4. The 
dry masses of these trees appear to be estimated 
too high.

Errors in area, age and volume estimation are 
assumed to be comparably small. Independent 
volume models were generated in different condi-
tions and seasons for another project (unpublished 
data). It was shown that the calculated volumes had 
a high grade of reproducibility.

The allocation of dry mass was very heteroge-
netic in the sampled linear forest objects. Some 
segments had a very dense vegetation, others seg-
ments had large gaps in the centre. Some segments 
had a large part of small shrubs while others mainly 
consisted of a few large trees.

This heterogeneity probably had the largest im-
pact on the error of prediction. The estimated 
dry masses of the trees left standing are assumed 
to have the second largest impact. The errors in 
area, age and volume estimation are assumed to be 
negligible.
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Different plot sizes. The rRMSE decreased con-
siderably with increasing plot sizes. This effect is 
probably in part due to decreased edge errors. How-
ever another reason surly is that errors are averaged 
in larger plot sizes and consequently disguised.

Applicability

In the present study the age of the objects was 
ascertained by annual ring counting after harvest-
ing. Drill cores gained by growth ring drills could 
deliver this information semi-destructive. For an 
absolute non-invasive method this needs to be done 
in a different way (e.g. exploration of historic data).

Model 1.2b resulted in a relative 95% CISD of 82%. 
At a dry biomass of 10 t from typical 100 m hedge 
bank this CISD would result in a range between 2 
and 18 t. Model 2.1 resulted in a relative 95% CISD 
of 33%. At a dry biomass of 10 t this CISD would 
result in a range between 7 and 13 t. The error of 
the models using aerial images is twice that high 
compared to the error of the volume models. Con-
sequently, volume models should be preferred over 
models using optical images if smaller errors are 
essential.
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