J. For. Sci., 2017, 63(9):433-441 | DOI: 10.17221/28/2017-JFS

Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopyOriginal Paper

Juraj ČERŇAVA*, Ján TUČEK, Milan KOREŇ, Martin MOKRO©
Department of Forest Management and Geodesy, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovak Republic

Mobile laser scanning (MLS) is time-efficient technology of geospatial data collection that proved its ability to provide accurate measurements in many fields. Mobile innovation of the terrestrial laser scanning has a potential to collect forest inventory data on a tree level from large plots in a short time. Valuable data, collected using mobile mapping system (MMS), becomes very difficult to process when Global Navigation Satellite System (GNSS) outages become too long. A heavy forest canopy blocking the GNSS signal and limited accessibility can make mobile mapping very difficult. This paper presents processing of data collected by MMS under a heavy forest canopy. DBH was estimated from MLS point cloud using three different methods. Root mean squared error varied between 2.65 and 5.57 cm. Our research resulted in verification of the influence of MLS coverage of tree stem on the accuracy of DBH data.

Keywords: mobile mapping system; clustering; point cloud; circle fit

Published: September 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ČERŇAVA J, TUČEK J, KOREŇ M, MOKRO© M. Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopy. J. For. Sci. 2017;63(9):433-441. doi: 10.17221/28/2017-JFS.
Download citation

References

  1. American Society for Photogrammetry and Remote Sensing Board (2008): LAS specification. Version 1.2. Available at http://www.asprs.org/wp-content/uploads/2010/12/asprs_las_format_v12.pdf
  2. Boavida J., Oliveira A., Santos B. (2012): Precise tunnel survey using the RIEGL VMX-250 mobile laser scanning system. In: Licari S. (ed.): RIEGL Lidar 2012, Orlando, Feb 27-Mar 1, 2012: 1-13.
  3. Čerňava J. (2015): Zis»ovanie dendrometrických veličín pomocou údajov z mobilného mapovacieho systému. Acta Facultatis Forestalis Zvolen, 57: 161-171.
  4. Forsman M., Holmgren J., Olofsson K. (2016): Tree stem diameter estimation from mobile laser scanning using linewise intensity-based clustering. Forests, 7: 206. Go to original source...
  5. Gillet J., Scherzinger B.M., Lithopoulos E. (2000): Inertial/GPS system for seismic survey. In: Liner L.C. (ed.): Proceedings of Society of Exploration Geophysicists, Calgary, June 4-7: 1-9.
  6. Holopainen M., Vastaranta M., Hyyppä J. (2014): Outlook for the next generation's precision forestry in Finland. Forests, 5: 1682-1694. Go to original source...
  7. Holopainen M., Kankare V., Vastaranta M., Liang X., Lin Y., Vaajac M., Yu X., Hyyppä J., Hyyppä H., Kaartinen H., Kukko A., Tanhuanpääa T., Alho P. (2013): Tree mapping using airborne, terrestrial and mobile laser scanning - a case study in a heterogeneous urban forest. Urban Forestry & Urban Greening, 12: 546-553. Go to original source...
  8. Kelbe D., van Ardt J., Romanczyk P., van Leeuwen M., CawseNicholson K. (2015): Single-scan stem reconstruction using low-resolution terrestrial laser scanner data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 3414-3427. Go to original source...
  9. Liang X., Hyyppä J., Kukko A., Kaartinen H., Jaakkola A., Yu X. (2014): The use of a mobile laser scanning system for mapping large forest plots. IEEE Geoscience and Remote Sensing Letters, 11: 1504-1508. Go to original source...
  10. Liang X., Kankare V., Hyyppä J., Wang Y., Kukko A., Haggrén H., Yu X., Kaartinen H., Jaakkola A., Guan F., Holopainen N., Vastaranta M. (2016): Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 63-77. Go to original source...
  11. Mandlburger G., Otepka J., Karel W., Wagner W., Pfeifer N. (2009): Orientation and processing of airborne laser scanning data (OPALS) - concept and first results of a comprehensive ALS software. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-3/W8: 55-60.
  12. Pfeifer N., Mandlburger G., Otepka J., Karel W. (2014): OPALS - a framework for airborne laser scanning data analysis. Computers, Environment and Urban Systems, 45: 125-136. Go to original source...
  13. Rasinmäki J., Melkas T. (2005): A method for estimating tree composition and volume using harvester data. Scandinavian Journal of Forest Research, 20: 85-95. Go to original source...
  14. Reutebuch S.E., Carson W.W., Ahmed K.M. (2003): A test of the Applanix POS LS inertial positioning system for the collection of terrestrial coordinates under a heavy forest canopy. In: Haukaas J., O'Shea M. (eds): Precision Forestry. Proceedings of the 2nd International Precision Forestry Symposium, Seattle, June 15-17, 2003: 21-28.
  15. Rönnholm P., Liang X., Kukko A., Jaakkola A., Hyyppä J. (2016): Quality analysis and correction of mobile backpack laser scanning data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-1: 41-47. Go to original source...
  16. Schnabel R., Wahl R., Klein R. (2007): Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum, 26: 214-226. Go to original source...
  17. Tang J., Chen Y., Kukko A., Kaartinen H., Jaakkola A., Khoramshahi E., Hakala T., Hyyppä J., Holopainen M., Hyyppä H. (2015): SLAM-aided stem mapping for forest inventory with small-footprint mobile LiDAR. Forests, 6: 4588-4606. Go to original source...
  18. Wang D., Hollaus M., Puttonen E., Pfeifer N. (2016): Automatic and self-adaptive stem reconstruction in landslideaffected forests. Remote Sensing, 8: 974. Go to original source...
  19. Wu B., Yu B., Yue W., Shu S., Tan W., Hu C., Huang Y., Wu J., Liu H. (2013): A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sensing, 5: 584-611. Go to original source...
  20. You L., Tang S., Song X., Lei Y., Zang H., Lou M., Zhuang C. (2016): Precise measurement of stem diameter by simulating the path of diameter tape from terrestrial laser scanning data. Remote Sensing, 8: 717. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.