J. For. Sci., 2016, 62(10):470-484 | DOI: 10.17221/41/2016-JFS

Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech RepublicOriginal Paper

R.P. Sharma, Z. Vacek, S. Vacek
Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

Various forest models that estimate volume, site index, growth and yield, biomass, and sequestrated carbon amounts are based on the information of the tree heights. The tree heights are obtained either directly from measurements or indirectly estimated using height-diameter models. We developed a nonlinear mixed effect height-diameter model applicable to both conifer and broadleaved tree species through the introduction of dummy variable that accounts for the variations in the height-diameter relationship, caused by the effects of species-specific differences. Data from 255 sample plots located within the multi-layered mixed species forests in the central part of the Czech Republic were used. Based on the fit statistics of twelve bi-parametric models, the Näslund's model, which best fits height-diameter data of various species, was selected for expansion by incorporating height of the tallest tree per sample plot, dummy variable, and sample plot-level random effects. As compared to the ordinary least square model, the mixed effect model described significantly a larger part of the variations in the height-diameter relationship and showed a higher prediction accuracy. Large prediction errors still occurred for the mixed species stands when all measured heights other than the focused species (species used in species group-specific model) per sample plot were used to predict random effects and localize the mixed effect model. But those errors were significantly reduced when all measured heights per sample plot, regardless of species were used to predict random effects. We therefore recommend a mixed effect model with random effects predicted using all measured heights per sample plot, regardless of species, to accurately predict the missing height measurements.

Keywords: height-diameter relationship; multi-layered forest stand; model localization; Näslund's model; prediction error

Published: October 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sharma RP, Vacek Z, Vacek S. Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. J. For. Sci. 2016;62(10):470-484. doi: 10.17221/41/2016-JFS.
Download citation

References

  1. Adame P., del Río M., Canellas I. (2008): A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, 256: 88-98. Go to original source...
  2. Adamec Z. (2015): Vyu¾ití moderních regresních metod pro modelování vý¹kové køivky. [Ph.D. Thesis.] Brno, Mendel University in Brno: 214.
  3. Akaike H. (1974): A new look at statistical model identification. IEEE Transactions on Automatic Control, AC-19: 716-723. Go to original source...
  4. Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of Royal Statistical Society, 42: 1-16. Go to original source...
  5. Bertalanffy L.V. (1957): Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32: 217-231. Go to original source... Go to PubMed...
  6. Buford M.A. (1986): Height-diameter relationship at age 15 in loblolly pine seed sources. Forest Science, 32: 812-818. Go to original source...
  7. Calama R., Montero G. (2004): Interregional nonlinear heightdiameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34: 150-163. Go to original source...
  8. Castedo Dorado F., Anta M.B., Parresol B.R., Álvarez González J.G. (2005): A stochastic height-diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Annals of Forest Science, 62: 455-465. Go to original source...
  9. Castedo Dorado F., Diéguez-Aranda U., Anta M.B., Sánchez Rodríguez M., von Gadow K. (2006): A generalized heightdiameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 229: 202-213. Go to original source...
  10. Chapagain T.R., Sharma R.P., Bhandari S.K. (2014): Modeling above-ground biomass for three tropical tree species at their juvenile stage. Forest Science and Technology, 10: 51-60. Go to original source...
  11. Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H., Bailey R.L. (1983): Timber Management: A Quantitative Approach. New York, John Wiley & Sons, Inc.: 333.
  12. Crecente-Campo F., Tomé M., Soares P., Diéguez-Aranda U. (2010): A generalized nonlinear mixed-effects heightdiameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259: 943-952. Go to original source...
  13. Curtis R.O. (1967): Height-diameter and height-diameter-age equations for second growth Douglas fir. Forest Science, 13: 365-375.
  14. de-Miguel S., Mehtätalo L., Shater Z., Kraid B., Pukkala T. (2012): Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42: 1383-1394. Go to original source...
  15. de Souza Vismara E., Mehtätalo L., Ferreira Batista J.L. (2016): Linear mixed-effects models and calibration applied to volume models in two rotations of Eucalyptus grandis plantations. Canadian Journal of Forest Research, 46: 132-141. Go to original source...
  16. Ferguson I.S., Leech J.W. (1978): Generalized least squares estimation of yield functions. Forest Science, 24: 27-42.
  17. FMI (2003): Inventarizace lesù, metodika venkovního sbìru dat. Brandýs nad Labem, Forest Management Institute: 136.
  18. Fu L., Sun H., Sharma R.P., Lei Y., Zhang H., Tang S. (2013): Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. Forest Ecology and Management, 302: 210-220. Go to original source...
  19. Gregoire T.G., Schabenberger O., Barrett J.P. (1995): Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Canadian Journal of Forest Research, 25: 137-156. Go to original source...
  20. Haglöf Sweden, A.B. (2011): Vertex Laser VL402 User's Manual. Långsele, Haglöf Sweden, A.B.: 41.
  21. Huang S., Titus S.J. (1994): An age-independent individual tree height prediction model for boreal spruce-aspen stands in Alberta. Canadian Journal of Forest Research, 24: 1295-1301. Go to original source...
  22. Huang S., Price D., Titus S.J. (2000): Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 129: 125-141. Go to original source...
  23. Huxley J.S., Teissier G. (1936): Terminology of relative growth. Nature, 137: 780-781. Go to original source...
  24. IFER (2016): Field-Map Software and Hardware Catalogue. Jílové u Prahy, Institute of Forest Ecosystem Research - Monitoring and Mapping Solutions, Ltd.: 50.
  25. Kangas A., Maltamo M. (2002): Anticipating the variance of predicted stand volume and timber assortments with respect to stand characteristics and field measurements. Silva Fennica, 36: 799-811. Go to original source...
  26. Lappi J. (1997): A longitudinal analysis of height-diameter curves. Forest Science, 43: 555-570. Go to original source...
  27. Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., Schabenberger O. (2006): SAS for Mixed Models. 2nd Ed. Cary, SAS Institute Inc.: 814.
  28. Mehtätalo L. (2004): A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research, 34: 131-140. Go to original source...
  29. Mehtätalo L., de-Miguel S., Gregoire T.G. (2015): Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45: 826-837. Go to original source...
  30. Meng S.X., Huang S.M., Yang Y.Q., Trincado G., VanderSchaaf C.L. (2009): Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine trees. Canadian Journal of Forest Research, 39: 1148-1158. Go to original source...
  31. Meyer H.A. (1940): A mathematical expression for height curves. Journal of Forestry, 38: 415-420.
  32. Monserud R.A. (1984): Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science, 30: 943-965.
  33. Näslund M. (1936): Skogsforsö ksastaltens gallringsforsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt, 29: 1-169.
  34. Newton R.F., Amponsah I.G. (2007): Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lackof-fit and predictive ability. Forest Ecology and Management, 247: 149-166. Go to original source...
  35. Paulo J.A., Tomé J., Tomé M. (2011). Nonlinear fixed and random generalized height-diameter models for Portuguese cork oak stands. Annals of Forest Science, 68: 295-309. Go to original source...
  36. Pinheiro J.C., Bates D.M. (2000): Mixed-effects Models in S and S-PLUS. New York, Springer-Verlag: 527. Go to original source...
  37. Pretzsch H. (2009): Forest Dynamics, Growth and Yield: From Measurement to Model. Berlin, Springer-Verlag: 664. Go to original source...
  38. Robinson A.P., Wykoff W.R. (2004): Imputing missing height measures using a mixed-effects modeling strategy. Canadian Journal of Forest Research, 34: 2492-2500. Go to original source...
  39. SAS Institute Inc. (2008): SAS/ETS1 9.1.3 User's Guide. Cary, SAS Institute Inc.: 263.
  40. Schmidt M., Kiviste A., von Gadow K. (2011): A spatially explicit height-diameter model for Scots pine in Estonia. European Journal of Forest Research, 130: 303-315. Go to original source...
  41. Sharma M., Parton J. (2007): Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249: 187-198. Go to original source...
  42. Sharma M., Zhang S.Y. (2004): Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19: 442-451. Go to original source...
  43. Sharma R.P., Breidenbach J. (2015): Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. Forest Science and Technology, 11: 44-53. Go to original source...
  44. Sharma R.P., Vacek Z., Vacek S. (2016): Individual tree crown width models for Norway spruce and European beech in Czech Republic. Forest Ecology and Management, 366: 208-220. Go to original source...
  45. Sharma R.P., Brunner A., Eid T., Øyen B.H. (2011): Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. Forest Ecology and Management, 262: 2162-2175. Go to original source...
  46. Sirkiä S., Heinonen J., Miina J., Eerikäinen K. (2015): Subject-specific prediction using a nonlinear mixed model: Consequences of different approaches. Forest Science, 61: 205-212. Go to original source...
  47. Staudhammer C., LeMay V. (2000): Height prediction equations using diameter and stand density measures. The Forestry Chronicle, 76: 303-309. Go to original source...
  48. Temesgen H., von Gadow K. (2004): Generalized heightdiameter models: An application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123: 45-51. Go to original source...
  49. Temesgen H., Zhang C.H., Zhao X.H. (2014): Modelling tree height-diameter relationships in multi-species and multilayered forests: A large observational study from Northeast China. Forest Ecology and Management, 316: 78-89. Go to original source...
  50. Trincado G., VanderSchaaf C.L., Burkhart H.E. (2007): Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 126: 253-262. Go to original source...
  51. van Laar A., Akça A. (2007): Forest Mensuration. Managing Forest Ecosystems. Vol. 13. Dordrecht, Springer-Verlag: 383. Go to original source...
  52. Vanclay J.K. (1994): Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. Wallingford, CABI: 312.
  53. Vonesh E.F., Chinchilli V.M. (1997): Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York, Marcel Dekker Inc.: 560. Go to original source...
  54. Wykoff W.R., Crookston N.L., Stage A.R. (1982): User's Guide to the Stand Prognosis Model. General Technical Report INT-133. Ogden, USDA Forest Service, Intermountain Forest and Range Experiment Station: 231. Go to original source...
  55. Zeide B., Curtis V. (2002): The effect of density on the heightdiameter relationship. In: Outcalt K.W. (ed.): Proceedings of the 11th Biennial Southern Silvicultural Research Conference. General Technical Report SRS-48, Knoxville, Mar 19-22, 2001: 463-466.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.