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ABSTRACT: Various forest models that estimate volume, site index, growth and yield, biomass, and sequestrated 
carbon amounts are based on the information of the tree heights. The tree heights are obtained either directly from 
measurements or indirectly estimated using height-diameter models. We developed a nonlinear mixed effect height-
diameter model applicable to both conifer and broadleaved tree species through the introduction of dummy variable 
that accounts for the variations in the height-diameter relationship, caused by the effects of species-specific differ-
ences. Data from 255 sample plots located within the multi-layered mixed species forests in the central part of the 
Czech Republic were used. Based on the fit statistics of twelve bi-parametric models, the Näslund’s model, which best 
fits height-diameter data of various species, was selected for expansion by incorporating height of the tallest tree per 
sample plot, dummy variable, and sample plot-level random effects. As compared to the ordinary least square model, 
the mixed effect model described significantly a larger part of the variations in the height-diameter relationship and 
showed a higher prediction accuracy. Large prediction errors still occurred for the mixed species stands when all 
measured heights other than the focused species (species used in species group-specific model) per sample plot were 
used to predict random effects and localize the mixed effect model. But those errors were significantly reduced when 
all measured heights per sample plot, regardless of species were used to predict random effects. We therefore recom-
mend a mixed effect model with random effects predicted using all measured heights per sample plot, regardless of 
species, to accurately predict the missing height measurements.
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Tree height and diameter measurements are ba-
sic input information to various forest models that 
serve as important tools in forest management. 
Various forest models such as volume, site index, 
growth and yield, biomass, and carbon budget mod-
els are based on the measurements of tree heights. 
For any sample plot inventory design such as na-
tional forest inventory sample plots, permanent 
sample plots, and temporary sample plots, diam-
eters are measured for all trees, but only few select-
ed trees are measured for total heights. Measuring 
heights of the standing trees is much more difficult, 
time consuming, and costlier than measuring di-
ameters. In such a situation, a sample plot-specific 
height-diameter model is necessary for accurate 

prediction of the missing height measurements of 
the trees for which diameters are measured.

The height-diameter relationship differs from one 
stand to another due to differences in site quality, 
stand age, silvicultural treatments applied, and even 
within the same stand due to a differing competitive 
situation among the trees (Vanclay 1994; Zeide, 
Curtis 2002; Pretzsch 2009). Thus, height-diam-
eter models need to be made stand-specific in or-
der to increase the prediction accuracy. In addition, 
more realistic description of the forest structure 
such as growth simulation and estimation of sam-
ple plot-level volume is possible with stand specific 
height-diameter models (Mehtätalo et al. 2015). 
However, it would be costly and time consuming 
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to develop separate stand-specific height-diame-
ter models for a number of stands that are located 
across the forests. Heights and diameters of at least 
20–25 trees per stand need to be measured to de-
velop the accurate stand-specific height-diameter 
models (van Laar, Akça 2007). This could be pos-
sible when there are only a few stands to be covered 
and the height-diameter models specific to such 
stands can be developed using either non-paramet-
ric approach or parametric approach – a common 
approach. A single height-diameter model applica-
ble to a large forest area can be developed using one 
of the two parametric approaches.

The first approach uses site quality measures (site 
index or dominant height) and stand density mea-
sures (basal area, stem number, mean diameter) as 
additional covariates in the height-diameter models 
(Sharma, Zhang 2004; Temesgen, von Gadow 
2004; Castedo Dorado et al. 2006). These models 
are commonly known as the generalized ordinary 
least square height-diameter models. The second 
approach uses site quality and stand density mea-
sure as additional covariates and subject-specific 
effects as random effects in the height-diameter 
models (Mehtätalo 2004; Crecente-Campo et 
al. 2010; Mehtätalo et al. 2015; Sharma, Brei- 
denbach 2015). These models are often termed 
as the generalized mixed effect models (hereafter 
termed as mixed effect model) and are more ac-
curate than the generalized ordinary least square 
height-diameter models (Crecente-Campo et al. 
2010; Paulo et al. 2011; Sharma, Breidenbach 
2015). This study applies the second approach using 
stand measures and sample plot-specific random ef-
fects. The mixed effect model would therefore have 
a high prediction accuracy (Robinson, Wykoff 
2004; Crecente-Campo et al. 2010; Adamec 2015;  
Mehtätalo et al. 2015).

This study uses data from the multi-layered mixed 
species forests. The height-diameter relationship 
varies more significantly in the multi-layered mixed 
species stands than in a single species and/or a sin-
gle-layered stands due to the effects of species-spe-
cific differences. These effects can be modelled us-
ing a dummy variable approach (Chapagain et al. 
2014; Temesgen et al. 2014). When there is a data 
limitation, developing a species-specific height-
diameter model for each of the several species that 
are present in the same sample plot is not possible. 
In such a situation, a single height-diameter model 
applicable to both conifer and broadleaved species 
can be developed using a dummy variable model-
ling approach. Stand variable, dummy variable, and 
sample plot-level random effects have been includ-

ed in the model. The proposed model can be used 
for the accurate prediction of missing height mea-
surements on each sample plot.

MATERIAL AND METHODS

Study area. This study was conducted in the for-
est stands in Prague located in the middle part of 
the Czech Republic (Fig. 1). The forest stands are lo-
cated at the altitudes between 178 and 381 m a.s.l., 
covering 5,100 ha (10% of the Prague area), and 
out of which 2,900 ha is owned by the capital city 
of Prague. The mean annual temperature and pre-
cipitation of Prague are 8.6°C and 530 mm, and dur-
ing the growing season they are 8.8°C and 390 mm, 
respectively. The forest stands are often located on 
sloping terrains and rocky hillsides, where geologi-
cal bedrock is much diversified, mostly composed of 
siltstone, limestone and slate, and soil conditions are 
fairly heterogeneous. A part of the forest (2,200 ha) 
falls within the protected area system (Nature Re-
serve, Natural Monument, Natural Park), which is a 
unique feature of Prague, both from geological and 
biological points of view. The forest stands consist 
of 75% of broadleaved species and the rest is coni-
fer ones. Sessile oak (Quercus petraea (Mattuschka) 
Lieblein) is a dominating broadleaved species while 
European larch (Larix decidua Miller) is a dominat-
ing conifer species of the forests. 

Research sample plots. Based on the canopy 
structures, natural regeneration, and stocks of dead 
wood, 272 circular research plots, hereafter termed 
as sample plots (area: 400 m2) were established 
across the forests (Fig. 1) following the Field-Map 
technology of the IFER – Monitoring and Mapping 
Solutions, Ltd. (IFER 2016). Sample plots are lo-
cated in 250 × 250 m grids across the forests. The 
position of all trees and regenerations on each sam-
ple plot was recorded. Over bark DBH for all trees 
with DBH ≥ 7 cm were measured with a calliper to 
the nearest 1 mm. Based on the DBH classes, tree 
height of at least five sample trees per sample plot 
for a dominating species and one for each of the 
other species were measured to the nearest 0.1 m 
using a laser Vertex hypsometer (Haglöf Sweden, 
A.B., Långsele, Sweden; Haglöf Sweden, A.B. 2011). 
The trees with measured heights, hereafter, are 
termed as height sample trees. Thus, height sam-
ple trees represent all DBH classes on each sam-
ple plot, covering all diameter classes, but might 
or might not have included the tallest tree on the 
sample plot. Other tree- and stand-level variables 
on each sample plot were also measured following 
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the inventory protocols developed by the Forest 
Management Institute (FMI 2003). Measurements 
were done between June 2012 and May 2014, but 
no repeated measurements involved.

Stand variables. Various stand variables that de-
scribe site quality and stand density were evaluated 
in the height-diameter model. However, the vari-
ables which describe site quality, such as site index 
(Monserud 1984) and dominant heights (Shar-
ma et al. 2011), were not measured. Both tree 
growth and stand dynamics are linked to dominant 
height as this reflects the site quality (Monserud 
1984). Dominant height and dominant diameter 
are therefore commonly used as additional covari-
ates in the height-diameter models (Castedo Do-
rado et al. 2005, 2006; Crecente-Campo et al. 
2010) and other individual tree models (Fu et al. 
2013). However, in the absence of dominant height 
and dominant diameter, we selected the height and 
diameter of the tallest tree among the height sam-
ple trees per sample plot and used them as a proxy 
for dominant height (hmax) and dominant diam-
eter (Dmax), respectively (Sharma, Parton 2007; 
Sharma, Breidenbach 2015). In addition, we also 
used other stand variables such as stand basal area 
(BA), number of stems (N), quadratic mean diam-
eter (QMD), and arithmetic mean diameter (AMD) 
per sample plot that described the stand density 
effects on the height-diameter relationships. The 
stand variables which describe the competitive 

situation among the individual trees within a stand 
have frequently been included in the height-diam-
eter models (Calama, Montero 2004; Sharma, 
Zhang 2004; Newton, Amponsah 2007; Adame 
et al. 2008; Schmidt et al. 2011; Mehtätalo et 
al. 2015). We also calculated the diameter differ-
ence of the thickest and thinnest trees (DBHrange) 
and the height difference of the tallest and shortest 
trees (hrange). All aforementioned stand-level vari-
ables were computed using all trees per sample plot 
regardless of species.

Height-diameter data. We used only height and 
diameter measurements from the standing, living, 
and undamaged trees. Except 56% of sample plots, 
other sample plots consisted of mixed tree spe-
cies (i.e. at least two tree species existing together). 
Mixed species sample plots consist of various tree 
species in general, but in particular, mainly three 
conifer species such as Norway spruce, Scots pine, 
and European larch, and four broadleaved species 
such as oak, maple, ash, and small-leaved linden 
(Appendix). We excluded height-diameter mea-
surements of only a few trees, which had very small 
DBH (< 8 cm) but extremely tall heights (> 20 m), 
assuming that they were due to measurement or re-
cording errors. But, these trees were excluded after 
stand-level competition measures were computed. 
Because of applying various data selection criteria, 
only 94% of sample plots remained for modelling. 
Summary statistics of the data are presented in Ta-

Fig. 1. Various 
forest stands 
of Prague (grey 
colour) where 
research sample 
plots are located
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ble 1. The number of height sample trees per sam-
ple plot varied from 5 to 15. The pairs of height and 
diameter measurements are shown in Fig. 2. Most 
of the observations for each species group seem to 
have occupied the same space in this graph.

Base models. Generally, relationship between 
height and diameter of a tree is nonlinear and 
height curve increases more rapidly in earlier 
stages than in later stages (Lappi 1997; Pretzsch 
2009; Schmidt et al. 2011). Our data also show a 
significant nonlinear pattern (Fig. 2). We therefore 
selected twelve bi-parametric nonlinear models 
(Table 2) to fit data. We examined the fit statistics 
of each model and selected the one which showed 
the smallest sum of squared errors. Choosing only 

bi-parametric models was that the convergence of 
each model for each individual sample plot must be 
ensured. Näslund’s model (Näslund 1936) showed 
the smallest sum of squared errors of fitting data, 
and therefore was selected for further analyses. 
Other studies (Kangas, Maltamo 2002; Schmidt 
et al. 2011; Mehtätalo et al. 2015; Sharma, Bre-
idenbach 2015) also used this model for further 
expansion because of its adequate flexibility. This 
model, hereafter termed as a base model, is given 
by Eq. 1:

   (1)  	  (1)

where:
hij	 – �height measurement for tree j (j = 1, …, m) on 

sample plot i (i = 1, …, n),
1.3	 – �added to avoid the prediction of zero height 

when DBH approaches zero,
DBHij	– �diameter measurement for tree j (j = 1, …, m) on 

sample plot i (i = 1, …, n),
b1, b2	 – parameters to be estimated,
εij	 – residual error.

Selection of stand variables. Base model (Eq. 1) 
described only a small part of the variations in the 
height-diameter relationship when fitted separately 
to a species group-specific (conifer species group 
and broadleaved species group) data. Thus, this 
model would be too poor to be applied for height 
predictions. We therefore included stand variables 
in order to describe a larger part of the variations 
in the height-diameter relationship. The stand vari-
ables can be included in the model using one of the 

Fig. 2. Total height against diameter; specgroup 1 – conifer 
tree species, specgroup 2 – broadleaved tree species

Table 1. Summary statistics of tree and stand attributes

Variable Conifer Broadleaved
Number of sample plots 5 pure + 44 conifer dominated 139 pure + 67 broadleaved dominated
Number of height sample trees 424 1,497

statistics [mean ± SD (range)]
Number of height sample trees per sample plot 6.21 ± 1.9 (5–12) 7.2 ± 2.22 (5–15)
Number of trees (N per ha) 300 ± 85 (60–500) 258 ± 86 (40–520)
BA (m2·ha–1) 22.31 ± 8.83 (4.4–50.8) 20.52 ± 13.04 (1–97.3)
QMD (cm) 30.9 ± 6.1 (19.3–48.9) 31.3 ± 9.8 (8.4–72.3)
AMD (cm) 28.7 ± 6.7 (15.8–71.1) 29.4 ± 9.4 (8.3–71.1)
hmax (m) 24.7 ± 4.6 (14.8–33.2) 23.3 ± 5.4 (8–38.2)
Dmax (cm) 38.5 ± 8.2 (17.3–66.7) 40.3 ± 13.1 (7.5–92.2)
DBHrange (cm) 28.1 ± 9.2 (8.3–65.1) 29.3 ± 13 (8–69.2)
hrange (m) 10.6 ± 5.1 (0.3–25.2) 10 ± 5.7 (0.5–30)
Total height (m) 21.8 ± 5.2 (9.7–33.2) 18.9 ± 6.3 (4.4–38.2)
DBH (cm) 31.7 ± 10.4 (11.1–74.2) 30.3 ± 14.1 (7.1–80.5)

N – number of stems, BA – stand basal area, QMD – quadratic mean diameter per sample plot, AMD – arithmetic mean 
diameter per sample plot, hmax – maximum height per sample plot, Dmax – maximum diameter per sample plot, DBHrange – 
diameter range per sample plot, hrange – height range per sample plot, SD – standard deviation
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two approaches (Huang, Titus 1994; Staudham-
mer, LeMay 2000). The first is the parameter pre-
diction approach (Clutter et al. 1983), and is also 
known as a two-stage approach (Ferguson, Leech 
1978), which indirectly adds stand variables into the 
model, and the second approach directly adds stand 
variables into the models (Sharma, Zhang 2004; 
Sharma, Parton 2007; Schmidt et al. 2011). Be-
cause of its biological relevance leading to easier in-
terpretation (Staudhammer, LeMay 2000; Shar-
ma et al. 2016), we applied two-stage approach. This 
is commonly used to select appropriate predictor 
variables (Mehtätalo 2004; Castedo Dorado 
et al. 2005; Adame et al. 2008; Sharma, Breiden-
bach 2015). In the first stage, we fitted the base 
model to the data for each sample plot separately 
and sample plot-specific estimates of the parame-
ters (b1, b2) of a base model were then plotted against 
each stand variable (N, BA, hmax, Dmax, QMD, AMD, 

DBHrange, hrange). Matrix plots of the relationship be-
tween each parameter of a base model against each 
of these stand variables and their transformations 
(square, logarithm, and root) and interactions were 
examined. In the second stage, the stand variables 
which showed a strong relationship with b1 or b2 
were used as covariates to expand the base model 
(Eq. 1). As compared to other variables, only hmax 
showed a strong relationship with b2 of a base mod-
el. We then expanded the base model through rede-
fining its parameter b2 as a function of hmax. Other 
stand variables were also subsequently added to this 
expanded model, however, no significant improve-
ment was observed.

Many of the stand variables tested in this study, 
such as N, BA, QMD, AMD, DBHrange and hrange, are 
influenced by thinning. The prediction accuracy for 
the same stand differs significantly before and after 
thinning even if the same height-diameter model 

Table 2. Base models used to fit height-diameter data

Designation Model Reference

M1 Huxley and Teissier (1936)

M2 Bertalanffy (1957)

M3 Näslund (1936)

M4 Huang et al. (2000)

M5 Meyer (1940)

M6 Huang et al. (2000)

M7 Wykoff et al. (1982)

M8 Bates and Watts (1980)

M9 Huang et al. (2000)

M10 Staudhammer and LeMay (2000)

M11 Buford (1986)

M12 Curtis (1967)

hij – height measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n), 1.3 – added to avoid the prediction of zero 
height when DBH approaches zero, b1, b2 – parameters to be estimated, DBHij – diameter measurement for tree j (j = 1, …, 
m) on sample plot i (i = 1, …, n), εij – residual error
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is applied. The chosen stand variables to develop 
a height-diameter model should therefore be inde-
pendent of thinning. The hmax is more independent 
of thinning (except thinning from above) than oth-
er stand variables.

We coded two species groups (conifer and 
broadleaved species) as 0 and 1 and developed a 
height-diameter model using the dummy variable 
modelling approach. This approach accounts for 
the variations in the height-diameter relationship, 
caused by the effect of species group-specific dif-
ferences (Chapagain et al. 2014; Temesgen et 
al. 2014). The effect of species group-specific dif-
ferences was best described by b1 of a base mod-
el when it was expressed as a linear function of a 
species group. The expanded version of Eq. 1 with 
dummy and stand variables is given by Eq. 2:

   (2) 

where:

hij – height measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n),

1.3 – added to avoid the prediction of zero height when DBH approaches zero, 

DBHij – diameter measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n),

b1, b2 – parameters to be estimated (b1 = a1 species + a2 species, ), 

a1–a4 – parameters to be estimated, 

hmax – the tallest height among the measured heights per sample plot regardless of the 

species if the species is a broadleaved species = 1, otherwise 0. 

	  (2)

where:
hij	 – �height measurement for tree j (j = 1, …, m) on 

sample plot i (i = 1, …, n),
1.3	 – �added to avoid the prediction of zero height 

when DBH approaches zero,
DBHij	– �diameter measurement for tree j (j = 1, …, m) on 

sample plot i (i = 1, …, n),
b1, b2	 – �parameters to be estimated (b1 = a1 + a2 species, 

if species is broadleaved, species = 1, otherwise 0; 

   (2) 

where:

hij – height measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n),

1.3 – added to avoid the prediction of zero height when DBH approaches zero, 

DBHij – diameter measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n),

b1, b2 – parameters to be estimated (b1 = a1 species + a2 species, ), 

a1–a4 – parameters to be estimated, 

hmax – the tallest height among the measured heights per sample plot regardless of the 

species if the species is a broadleaved species = 1, otherwise 0. 

,
a1–a4	– �parameters to be estimated,
hmax	 – �the tallest height among the measured heights 

per sample plot, regardless of species.
Nonlinear mixed effect model. We applied a 

mixed effect modelling approach by incorporating 
sample plot-level random effects into the model. A 
one-level nonlinear mixed effect model (Pinheiro, 
Bates 2000) is generally represented by Eq. 3:

yi = f(θi, xi) + εi 	  (3)

where:
yi	 – response vector for height measurements,
θi	 – �parameter vector of a nonlinear model  

(θi = Aib + Biui),
b	 – vector of fixed parameters with design matrix Ai,
Bi	 – random-effects design matrix for sample plot i,
ui	 – �vector of sample plot-level random effects (ui1, ui2) 

for sample plot i, it is assumed to have multivariate 
normal distribution with zero mean and variance-
covariance matrix D (ui ~N (0, D)),

xi	 – �predictor vector for DBH measurements on sample 
plot i,

εi	 – residual vector (εi ~N (0, Ri)),
~N – normally distributed with zero mean and within-	
		  sample-plot variance-covariance matrix Ri .

The within-sample-plot variance-covariance ma-
trix (Ri) is given by Eq. 4:

Ri = σ2 Гi    (4) 

 

	  (4)

where:
σ2	– �residual variance common to all sample plots, i.e. σ2 

is a scaling factor for error dispersion (Gregoire et 
al. 1995) given by the value of the residual variance 
of the estimated model,

Gi	– �diagonal matrix describing the variance of within-
sample-plot residual heteroscedasticity,

Гi	 – �matrix accounting for within-sample-plot autocor-
relations of the residuals, however, Гi was reduced 
to an identity matrix because of the absence of 
within-sample-plot autocorrelations.

Among three alternative variables (DBH, ob-
served height, estimated height) tested to sta-
bilize the variance, within-sample-plot residual 
heteroscedasticity was taken into account by 
modelling variance as a function of the estimated 
height, as Eq. 5:

var(εi) = σ2    (5) 

 

	  (5)

where:
εi	 – residual vector (εi ~N (0, Ri)),
σ2	– �residual variance common to all sample plots, i.e. σ2 

is a scaling factor for error dispersion (Gregoire et 
al. 1995) given by the value of the residual variance 
of the estimated model,

hij	– �height measurement for tree j (j = 1, …, m) on 
sample plot i (i = 1, …, n).

The mixed effect model after inclusion of sample 
plot-level random effects is given by Eq. 6:

   (6) 

where: 

hij – height measurement for tree j ( j = 1, …, m) on sample plot i ( i = 1, …, n), 

1.3 – added to avoid the prediction of zero height when DBH approaches zero, 

DBH jkt – ?, 

b1, b2 – parameters to be estimated (b1 = a1 species + a2 species, if the species is a 

broadleaved species = 1, otherwise 0; ), 

ui – vector of sample plot-level random e�ects (ui1, ui2) for sample plot i, it is assumed to 

have multivariate normal distribution with zero mean and variance-covariance matrix D (ui ~  

N (0, D)), 

DBH ij – diameter measurement for tree j ( j = 1, …, m) on sample plot i ( i = 1, …, n), 

εi – residual vector (εi ~  N (0, Ri)), 

N – ?, 

Ri – within-sample-plot variance-covariance matrix. 

 

 	  (6)

where:
hij	 – �height measurement for tree j (j = 1, …, m) on 

sample plot i (i = 1, …, n),
1.3	 – �added to avoid the prediction of zero height 

when DBH approaches zero,
b1, b2	 – �parameters to be estimated (b1 = a1 + a2 species, 

if species is broadleaved, species = 1, otherwise 
0; 

   (2) 

where:

hij – height measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n),

1.3 – added to avoid the prediction of zero height when DBH approaches zero, 

DBHij – diameter measurement for tree j (j = 1, …, m) on sample plot i (i = 1, …, n),

b1, b2 – parameters to be estimated (b1 = a1 species + a2 species, ), 

a1–a4 – parameters to be estimated, 

hmax – the tallest height among the measured heights per sample plot regardless of the 

species if the species is a broadleaved species = 1, otherwise 0. 

,
ui	 – �vector of sample plot-level random effects 

(ui1, ui2) for sample plot i, it is assumed to have 
multivariate normal distribution with zero 
mean and variance-covariance matrix D (ui ~N 
(0, D)),

DBHij	– �diameter measurement for tree j (j = 1, …, m) on 
sample plot i (i = 1, …, n),

εi	 – residual vector (εi ~N (0, Ri)),
~N	 – normally distributed with zero mean and within-

sample-plot variance-covariance matrix Ri .
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Hereafter, a model estimated with random effects 
(Eq. 6) and that without random effects (Eq. 2) are 
termed as mixed effect model and ordinary least 
square (OLS) model, respectively.

Model estimation and evaluation. The mixed ef-
fect model was estimated with restricted maximum 
likelihood in SAS macro NLINMIX (SAS Institute 
Inc. 2008) using an expansion-around-zero method 
(Littell et al. 2006). Base models (Table 2) were 
estimated using PROC MODEL (SAS Institute 
Inc. 2008) with the ordinary least square method. 
The estimated models were evaluated using root 
mean square error (RMSE), adjusted coefficient of 
determination (R2

adj), Akaike information criterion 
(AIC) (Akaike 1974) and Schwarz’s Bayesian in-
formation criterion (BIC). Graphs of the residuals 
and simulated curves overlaid on the observed data 
were also examined for each species group. We also 
examined prediction errors of the subject-specific 
(or localized) model and height-diameter curves 
overlaid on the observed data for each sample plot.

Subject-specific predictions. In addition to 
predictor variables, a priori information of a re-
sponse variable (Eq. 6) is needed for subject-spe-
cific predictions (Pinheiro, Bates 2000; Cala-
ma, Montero 2004). The measured heights of 
any number of trees per sample plot can be used 
to predict random effects and adjusted to the 
fixed part of the mixed effect model, and this is 
also known as localization or calibration of the 
mixed effect model. We applied the empirical best 
linear unbiased prediction (EBLUP) theory (Eq. 7) 
(Vonesh, Chinchilli 1997; Pinheiro, Bates 
2000) to estimate sample plot-level random ef-
fects in Eq. 6 using PROC IML of SAS (SAS Insti-
tute Inc. 2008):

–1 εi   (7) 

 

 	  (7)

where:
ui	 – �vector of sample plot-level random effects (ui1, ui2) 

for sample plot i, it is assumed to have multivariate 
normal distribution with zero mean and variance-
covariance matrix D (ui ~N (0, D)),

Zi	 – �design matrix for the random effects specific to 
additional observations, the elements of matrix 
Zi are partial derivatives of the nonlinear model 
(Eq. 6) with respect to its fixed parameters vector 
b (Calama, Montero 2004; Crecente-Campo 
et al. 2010; Sharma, Breidenbach 2015),

ZT	 – transpose matrix,
Ri	 – �within-sample-plot variance-covariance matrix,
εi	 – residual vector (εi ~N (0, Ri)),
~N	– normally distributed with zero mean and within-	
		  sample-plot variance-covariance matrix Ri .

Our main objective was to correctly impute the 
missing heights on the same sample plots that 
were used in this study. Therefore, instead of us-
ing splitting data or getting new data from dif-
ferent forest stands for the model validation, we 
used fitting data to predict random effects using 
the EBLUP theory (Eq. 7) in order to localize the 
mixed effect model and we examined the predic-
tion errors for each subject (or sample plot). For 
this purpose, we used various alternative methods 
that involved the selection of differing numbers 
of trees systematically or randomly with respect 
to heights, and prediction of random effects us-
ing the measured heights of the selected trees. 
Those alternatives are: systematically selected 
one shortest, one medium and one tallest height 
sample tree (alternative 1 to 3), and randomly se-
lected one to seven height sample trees (alterna-
tive 4 to 10). This evaluation was possible only 
for 167 sample plots where more than six height 
sample trees per sample plot were available. We 
also examined the prediction errors of the local-
ized model using measured heights of the trees 
other than the focused species (species used in a 
group-specific model). 

RESULTS

The base model (Eq. 1) described only a small part 
of the variations in the height-diameter relation-
ship when fitted separately to species group-specif-
ic data (R2

adj < 0.55). To improve the prediction ac-
curacy, stand-level variable (hmax), dummy variable 
(species) and sample plot-specific random effects 
were included in the base model. All parameter es-
timates and variance components of the expanded 
models are highly significant (P < 0.0001) (Table 3). 
Both OLS model and mixed effect model described 
the variations in the height-diameter relationship 
adequately well, but as expected, the former model 
fitted more poorly as compared to the latter model. 
The stand variable contributed significantly highly 
to the description of the variations in the height-
diameter relationship is the tallest height per sam-
ple plot (hmax). The inclusion of within-sample-plot 
residual heteroscedasticity through variance mod-
elling was able to reduce AIC by 2–3%. A reduc-
tion of the unexplained variance (i.e. mean squared 
residual, σ2) in the mixed effect model relative to 
the OLS model is 43%. A higher estimated value of 
the random effect parameter ui1 suggested that pa-
rameter b1 was more strongly correlated with the 
sample plot-level variations than parameter b2.
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We evaluated prediction errors of the mixed ef-
fect model using predicted random effects with the 
EBLUP method from differing number of height 
sample trees (Table 4). The prediction accuracy of 
the mixed effect model increased with increasing 
number of height sample trees used to predict ran-
dom effects. The shortest tree also resulted in high-
er accuracy than the medium or the tallest tree. 
The smallest prediction error was produced when 
random effects were predicted using all measured 
heights per sample plot, no matter whether it was 
a pure species or mixed species sample plot. The 
rate of reduction of RMSE relative to the fixed part 
of the mixed effect model decreased with increas-
ing numbers of trees, but the rate seemed too small 
to be insignificant after four trees. As compared to 
the fixed part of the mixed effect model, the OLS 
model showed slightly higher prediction accuracy.

We also examined the prediction accuracy of the 
mixed effect model using data from only mixed spe-
cies sample plots. Except the shortest height classes, 

the mixed effect model was able to show smaller 
prediction errors for all other height classes when 
all measured heights of the focused species were 
used to predict random effects (Figs 3a, c). When 
the measured heights of different species other than 
the focused species were used to predict random ef-
fects, the prediction errors appeared to be relative-
ly larger for both smaller and larger height classes 
(Figs 3b, d). However, when all measured heights 
per sample plot, regardless of the species, were used 
to predict random effects, those larger errors sub-
stantially decreased (Figs 4a, b). Except for height 
classes < 20 m and > 30 m for conifer species, no 
large errors appeared for pure broadleaved species  
(Figs 4c, d). As indicated by box length in Figs 3 and 4,  
most prediction errors are confined to a range of 
± 2 m. However, significantly large prediction er-
rors still remained to be accounted for some sample 
plots, even when all measured heights were used to 
localize the mixed effect model (Fig. 4).

We also examined height prediction errors and 
the height-diameter curves produced by the local-
ized mixed effect model for each sample plot. For 
mixed species sample plots, height-diameter curves 
are clearly differentiated into two groups: one for 
conifer species group and other for broadleaved 
species group, and each curve passes through the 
middle of the observed data points of the corre-
sponding species group (Fig. 5b). Except for few 
sample plots, height-diameter curves produced by 
the localized model showed complete coverage to 
the observed data for each sample plot. Height-di-
ameter curves overlaid on the observed data for all 
225 sample plots are shown in Fig. 5a.

DISCUSSION

Data used in this study vary widely (Table 1, 
Fig. 2), and represent all possible growth conditions 
and silvicultural treatments applied in the forests. 
The height-diameter relationship varies with the 
development stage of an individual stand due to the 
effects of stand density (Curtis 1967; Zeide, Cur-
tis 2002) and site quality (Sharma, Zhang 2004). 
Like many others (Sharma, Parton 2007; Adame 
et al. 2008; Mehtätalo et al. 2015; Sharma, Brei-
denbach 2015), we also included stand variables in 
the height-diameter model to describe a larger part 
of the variations caused by the effects of site quality 
and stand density on the height-diameter relation-
ship. Among several stand variables tested (Table 
1), we chose only the most significant one using the 
two-stage variable selection method, which is also 

Table 3. Parameter estimates, variance-covariance com-
ponents, and fit statistics of ordinary least square (OLS) 
model (Eq. 2) and its mixed effect version (Eq. 6)

Component OLS model Mixed model
Fixed
a1 1.0230 0.9703
a2 0.3283 0.3629
a3 0.8960 0.9860
a4 –0.3126 –0.3424
Variance and covariance
σ2  

ui1 0.3065
σui1 ui2 –0.00571
σ2

  ui1 ui2 0.000141
σ2 0.02322 0.01163
Fit statistic
RMSE 2.5358 1.8941
R2

adj 0.8289 0.9045
AIC 9,428 8,691
BIC 9,456 8,719
AIC reduction after inclusion 
of heteroscedasticity (%) 3 2

a1–a4 – parameters to be estimated, σ2 – residual variance 
common to all sample plots, i.e. σ2 is a scaling factor for error 
dispersion (Gregoire et al. 1995) given by the value of residual 
variance of the estimated model, ui – vector of sample plot-
level random effects (ui1, ui2) for sample plot i, it is assumed 
to have multivariate normal distribution with zero mean and 
variance-covariance matrix D (ui ~ N (0, D)), RMSE – root 
mean square error, R2

adj – adjusted coefficient of determina-
tion, AIC – Akaike information criterion, BIC – Schwarz’s 
Bayesian information criterion
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considered as the most relevant one (Staudham-
mer, LeMay 2000; Castedo Dorado et al. 2005; 
Adame et al. 2008; Sharma et al. 2016). The se-
lected stand variable (hmax), which showed the larg-

est contribution to the model, is also independent 
of thinning, except the case involving “thinning 
from above”. This is the reason why we used hmax 
as a covariate in our height-diameter model, and 

Table 4. Various methods (varying from systematic to random) of selecting height sample trees to predict random 
effects when localizing the mixed effect model (167 permanent research plots with at least seven height sample trees)

RMSE R2
adj

RMSE reduction relative to fixed 
part of mixed effect model (%)

OLS model 2.5831 0.8173 0.8
Fixed part of mixed effect model 2.6048 0.8142 0
Mixed effect model
One shortest height sample tree 2.4852 0.8309 4.6
One medium height sample tree 2.5325 0.8244 2.8
One tallest height sample tree 2.6002 0.8125 0.2
One height sample tree 2.5637 0.8201 1.6
Two height sample trees 2.2951 0.8557 11.9
Three height sample trees 2.2004 0.8674 15.5
Four height sample trees 2.1244 0.8764 18.4
Five height sample trees 2.0661 0.8831 20.7
Six height sample trees 2.0209 0.8882 22.4
Seven height sample trees 2.0079 0.8896 22.9

OLS model – ordinary least square model, RMSE – root mean square error, R2
adj – adjusted coefficient of determination

Fig. 3. Prediction errors of the mixed effect model for mixed species sample plots (111 sample plots) using all measured heights 
of the focused species (a, c), and other than the focused species (b, d). Here, predicted heights were used for height classes

specgroup 1 – conifer tree species, specgroup 2 – broadleaved tree species, length of the box – interquartile range (IQR), 
length of the whisker – class minimum and maximum values in IQR, small boxes – observations lying beyond 1.5 times IQR
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has also been frequently used in other height-di-
ameter models (Sharma, Parton 2007; Sharma, 
Breidenbach 2015). However, from the model ap-
plication perspective, using diameter-based stand 
measures (e.g. mean DBH) may be much cheaper 
and more practical (Mehtätalo 2004; Mehtäta-
lo et al. 2015) as less effort is required to measure 
diameter than height. As for the inventory proto-
cols designed by the Forest Management Institute 
(FMI 2003), the future inventory design is assumed 
to have the selection of height sample trees based 
on the diameter classes on each sample plot, cov-
ering all diameter classes, for height measurement 
and the tree with hmax among the measured heights 
can be easily identified. However, this hmax tree may 
or may not be the tallest one (extreme size), be-
cause there may be other trees which may include 
the tallest one, but may not be selected for height 
measurement. It is thus assumed that model users 
will not have a problem of getting this covariate 
information from the future inventories and can 
accurately predict the missing height measure-

ments of the remaining trees on each sample plot. 
Our model is not also intended to be used for new 
sample plots or other stands rather than those used 
in this study.

Our data originated from the multi-layered 
mixed species stands and finding the best base 
model that could largely describe the variations 
in the height-diameter relationship for each 
sample plot was quite challenging. Therefore, we 
performed the evaluation of several base models 
(Table 2) to find the most appropriate one to our 
data. Selected model (Näslund’s model) is based 
on the growth theory, i.e. faster increase of height 
in the earlier stage and slower increase in the later 
stage (Lappi 1997; Pretzsch 2009; Schmidt et 
al. 2011). This model is suitable not only for single 
canopy-layered stands, but also for multi-layered 
stands when stand-level variables and subject-spe-
cific random effects (i.e. sample plot-level random 
effects) are included in the model (Kangas, Mal-
tamo 2002; Schmidt et al. 2011; Mehtätalo et 
al. 2015; Sharma, Breidenbach 2015). Because 

Fig. 4. Prediction errors of the mixed effect model for mixed species sample plots (111 sample plots) (a, b), and for pure 
species sample plots (144 sample plots) (c, d) using all measured heights per sample plot, regardless of the species. Here, 
predicted heights were used as height classes

specgroup 1 – conifer tree species, specgroup 2 – broadleaved tree species, length of the box – interquartile range (IQR), 
length of the whisker – class minimum and maximum values in IQR, small boxes – observations lying beyond 1.5 times IQR
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of its pronounced flexibility, Näslund’s model also 
best fits height-diameter data from a number of 
tree species (Mehtätalo et al. 2015). Our height-
diameter model has a pronounced sensitivity, and 
therefore making a small change in hmax results 
in an apparent change in the height-diameter re-
lationship. Our model also behaves significantly 
differently for two species groups (Fig. 5). This is 
due to large effects of species group-specific dif-
ferences that were successfully modelled (Table 3). 
A large estimated value of variance ui1 suggests 
that parameter b1 of the mixed effect model highly 
varies across the sample plots. This justifies apply-
ing the sample plot-level mixed effect modelling 
approach.

The mixed effect height-diameter model can ac-
curately predict the missing height measurements, 
but large errors still remain to be accounted for 
(Table 4, Figs 3 and 4). This is due to the presence of 
extreme outlier observations that originated from 
multi-layered stands. Thus, the prediction accu-
racy of the mixed effect model for each individual 
tree depends highly on the vertical heterogeneity 
of a stand and numbers of the measured height 
sample trees to be used to predict random effects. 
Measured heights of any number of trees could 
be used to predict random effects and localize the 
mixed effect model, but accuracy largely depends 
on the representativeness of heights of the cho-
sen trees. Generally, higher the number of height 
sample trees chosen for the prediction of random 
effects, higher would be the prediction accuracy of 

the mixed effect model (Table 4). For a stand with 
homogeneous canopy, measured heights of only a 
few trees, even a single tree, work adequately well 
(Trincado et al. 2007). The prediction errors could 
be significantly reduced for a multi-layered stand, 
no matter whether the stand is pure or mixed spe-
cies, when all measured heights were used to pre-
dict random effects (Fig. 4). Measured heights of 
a single tree such as shortest or medium or tallest 
tree may be used to predict random effects. How-
ever, substantial bias may arise when the shortest 
or the tallest tree is used to predict random effects, 
because the first alternative most likely leads to un-
derprediction for the tree population and the sec-
ond leads to overprediction. Our evaluation of the 
effects of these selection alternatives on the height 
predictions also indicated such a consequence be-
cause of heterogeneities in the vertical structure of 
the stands. In contrast to selecting only the tallest 
or the shortest height sample tree systematically, 
random selection of trees for the prediction of ran-
dom effects may not cause substantial bias, because 
those selected trees also correspondingly represent 
some random diameter classes, mimicking the se-
lection based on diameters. However, it would be 
more appropriate when heights were randomly se-
lected based on diameter classes rather than height 
classes, to predict the random effects.

A medium-sized tree may be used for higher pre-
diction accuracy than using the shortest or tallest 
trees (Crecente-Campo et al. 2010; Sharma, 
Breidenbach 2015). The rate of reduction of 

Fig. 5. Trajectories of predicted heights by the mixed effect model for all 255 sample plots (a), with the random effects 
predicted using all measured heights per sample plot, regardless of the species. Individual dots are observed data. Each 
mixed species sample plot has two distinct height-diameter curves which represent conifer and broadleaved species, 
respectively (b)

specgroup 1 – conifer tree species, specgroup 2 – broadleaved tree species

(a) (b)
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prediction errors would be too small to be insig-
nificant when more than four height sample trees 
were chosen to predict random effects (Table 4). 
This suggests that four height sample trees may be 
the optimum number for localizing the mixed ef-
fect model. This is also consistent with the results 
of many other studies (Calama, Montero 2004; 
Castedo Dorado et al. 2006; Fu et al. 2013). This 
may also justify balancing the required inventory 
cost and desired prediction accuracy. The high-
est accuracy is obtained only when all measured 
heights per sample plot, regardless of the species, 
are used to predict random effects.

When measured heights of different species 
other than the focused species were used to pre-
dict random effects, the prediction errors would 
still be larger (Figs 3b, d). It is due to a significant 
difference between the heights of the focused spe-
cies and other species on the same sample plot 
and chosen height sample trees to predict random 
effects may not be sufficiently representative to 
the rest of the trees. The prediction errors for the 
mixed species stand were significantly reduced 
when all measured heights regardless of the spe-
cies are used to predict random effects (Figs 4a, b).  
Also, in order to reduce prediction errors for pure 
species stand, which may be uneven-aged or/
and multi-layered, all measured heights per sam-
ple plot must be used to predict random effects 
(Sharma, Breidenbach 2015). For a condition, 
when model users are not able to predict random 
effects using EBLUP method due to its complex-
ity, the application of the OLS model rather than 
only the fixed part of the mixed effect model is 
suggested (Meng et al. 2009; de-Miguel et al. 
2012; Sharma, Breidenbach 2015). However, 
in recent years, there has been a good access to 
the advanced computational facilities, which 
makes the application of the mixed effect model 
much easier. The height-diameter measurements 
are made on the same subject (same sample plot 
in our case) and therefore correlated with each 
other, and an assumption of independent errors is 
largely violated on the OLS fitting. This would re-
sult in biased variance of the parameter estimates 
and thus invalidate the hypothesis tests (Vonesh, 
Chinchilli 1997; Pinheiro, Bates 2000). An 
appropriate solution to this problem is that one 
has to use a mixed effect modelling approach to fit 
data. The predictions are also unbiased when the 
parameter estimates of the mixed effect model are 
unbiased and assumptions on the independence 
and identical distribution of random effects are 
met. However, the OLS fit often necessarily seems 

the better, but this is an artifact related to the use 
of RMSE as a comparison criterion, or to inap-
propriate formulation of the mixed effect model. 
Therefore, the mixed effect model needs to be a 
preferred choice in order to minimize the predic-
tion bias.

There may be a number of methods for calibrat-
ing height-diameter models. One of the alternative 
methods for modelling and calibrating the height-
diameter relationship for several tree species may 
have a model system where each tree species has its 
own model, and localization or calibration of the 
mixed effect model is done through the cross-cal-
ibration (de Souza Vismara et al. 2016). Howev-
er, we had very few observations for some species 
(Appendix) for which developing species-specific 
height-diameter model was not possible.

The subject-specific prediction bias may arise 
when a nonlinear mixed effect model is localized 
using the EBLUP method. There may be four dif-
ferent linearization methods, namely linearization 
at zero, linearization at the conditional mode, La-
place approximation, and best unbiased prediction 
with the Metropolis algorithm (Sirkiä et al. 2015). 
These methods are shown to be evidently different 
in the theoretical sense and therefore, they yield 
slightly different results under certain conditions. 
Such differences may be practically meaningful in a 
given forest modelling setting and depends on the 
details of that particular situation and an intended 
use of the model prediction. In case of a nonlin-
ear mixed effect model, it may be difficult to say 
how much, or even to which direction, different 
predictions would differ without actually finding 
them. In such a situation, for routine updates of 
forest stand and tree attributes, one may apply the 
EBLUP method to localize the nonlinear mixed ef-
fect model. The literatures also show that most of 
the forest modellers have used the EBLUP method 
while localizing the nonlinear mixed effect models, 
which is practically easier and more suitable than 
other linearizing methods.

To conclude, the mixed effect model predicted 
heights more accurately, not only for pure species 
stands, but also for mixed species stands, when all 
measured heights per sample plot, regardless of 
species, were used to predict random effects. The 
application of our models needs to be restricted 
to the same sample plots which were used in this 
study. The missing heights of a large number of 
trees (7–71% of trees per sample plot) can be im-
puted more accurately with the mixed effect model 
rather than applying OLS model or fixed part of 
mixed effect model (mean response).
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Appendix: List of tree species recoded on the sample plots

English name Scientific name Number of trees
Conifer species
European larch Larix decidua Miller 144
Scots pine Pinus sylvestris Linnaeus 120
Australian pine, European black pine Pinus nigra J.F. Arnold 53
Norway spruce Picea abies (Linnaeus) H. Karsten 97
Douglas fir Pseudotsuga menziesii (de Mirbel) Franco 5
Eastern white pine Pinus strobus Linnaeus 5
Broadleaved species
Sessile oak, durmast oak Quercus petraea (Mattuschka) Lieblein 527
Red oak, northern red oak Quercus rubra Linnaeus 162
European beech Fagus sylvatica Linnaeus 119
European hornbeam Carpinus betulus Linnaeus 117
Norway maple Acer platanoides Linnaeus 105
Sycamore maple Acer pseudoplatanus Linnaeus 75
Field maple, hedge maple Acer campestre Linnaeus 66
European ash, common ash Fraxinus excelsior Linnaeus 62
Elm Ulmus sps. 54
Robinia, locust, black locust Robinia pseudoacacia Linnaeus 47
European birch, common birch Betula pendula Roth 45
European mountain ash, rowan Sorbus aucuparia Linnaeus 24
Mazzard cherry, wild cherry Prunus avium Linnaeus 23
Pedunculate oak, English oak Quercus robur Linnaeus 16
Black cherry Prunus serotina Ehrhart 15
Wild pear Pyrus pyraster (Linnaeus) Burgsdorff 9
Small-leaved linden Tilia cordata Miller 8
Silver lime Tilia tomentosa Moench 7
Black alder, common alder Alnus glutinosa (Linnaeus) Gaertner 6
Aspen Populus tremula Linnaeus 5
Goat willow Salix caprea Linnaeus 3
Horse chestnut Aesculus hippocastanum Linnaeus 2 
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