J. For. Sci., 2015, 61(11):485-495 | DOI: 10.17221/46/2015-JFS

A fixed count sampling estimator of stem density based on a survival functionOriginal Paper

S. Magnussen
Natural Resources Canada, Canadian Forest Service, Victoria BC, Canada

In fixed count sampling (FCS) a fixed number (k) of observations is made at n randomly selected sample locations. For estimation of stem density, the distance from a random sample location to the k nearest trees was measured. It is known that practical FCS estimators of stem density are biased. With the objective of reducing bias in FCS estimators of stem density, a new estimator derived from a survival function with distance acting as time was presented. To allow for spatial heterogeneity in stem density, the survival function includes shared frailty. Encouraging results with k = 6 in terms of bias, root mean squared error (RMSE), and coverage of nominal 95% confidence intervals were obtained in an extensive testing with simulated random sampling from 54 actual and four simulated spatial point patterns of tree locations. Sample sizes were 9, 15, and 30, with 1200 replications per setting. The performance across sites of the new FCS estimator was variable but almost paralleled that of a design-based estimator with fixed area plots. Users of the new FCS estimator can expect an absolute relative bias and a root mean squared error that are 1% greater than for sampling with fixed area plots holding an average of k trees. The chance of a smaller RMSE with the proposed estimator was estimated at 0.44.

Keywords: bias; coverage; forest inventory; spatial point pattern; standard error; root mean squared error

Published: November 30, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Magnussen S. A fixed count sampling estimator of stem density based on a survival function. J. For. Sci. 2015;61(11):485-495. doi: 10.17221/46/2015-JFS.
Download citation

References

  1. Banerjee S., Wall M.M., Carlin B.P. (2003): Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics, 4: 123-142. Go to original source... Go to PubMed...
  2. Barbour M.T., Gerritsen J. (1996): Subsampling of benthic samples: a defense of the fixed-count method. Journal of the North American Benthological Society, 15: 386-391. Go to original source...
  3. Baskerville G.L. (1972): Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 2: 49-53. Go to original source...
  4. Casella G., Berger R.L. (2002): Statistical Inference. 2nd Ed. Pacific Grove, Duxbury Press: 660.
  5. Chen M.Y., Tsai J.L. (1980): Plotless sampling methods for investigating the arboreal stratum of vegetation. Quarterly Journal of Chinese Forestry, 13: 29-38.
  6. Clayton G., Cox T.F. (1986): Some robust density estimators for spatial point processes. Biometrics, 42: 753-767. Go to original source...
  7. Cleves M.A., Gould W.W., Gutierrez R.G. (2004): An Introduction to Survival Analysis Using STATA. College Station, STATA Press: 308.
  8. Conover W.J. (1980): Practical Nonparametric Statistics. New York, Wiley: 592.
  9. Cox T.F. (1976): The robust estimation of the density of a forest stand using a new conditioned distance method. Biometrika, 63: 493-499. Go to original source...
  10. Delince J. (1986): Robust density estimation through distance measurements. Ecology, 67: 1576-1581. Go to original source...
  11. Doberstein C.P., Karr J.R., Conquest L.L. (2000): The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. Freshwater Biology, 44: 355-371. Go to original source...
  12. Eberhardt L.L. (1967): Some developments in 'distance sampling'. Biometrics, 27: 207-216. Go to original source...
  13. Farnsworth G.L., Pollock K.H., Nichols J.D., Simons T.R., Hines J.E., Sauer J.R., Brawn J. (2002): A removal model for estimating detection probabilities from point-count surveys. The Auk, 119: 414-425. Go to original source...
  14. Fehrmann L., Gregoire T., Kleinn C. (2011): Triangulation based inclusion probabilities: a design-unbiased sampling approach. Environmental and Ecological Statistics, 19: 107-123. Go to original source...
  15. Gregoire T.G., Valentine H.T. (2008): Sampling Strategies for Natural Resources and the Environment. Boca Raton, Chapman & Hall/CRC: 465. Go to original source...
  16. Gutierrez R.G. (2002): Parametric frailty and shared frailty survival models. The Stata Journal, 2: 22-44. Go to original source...
  17. Hatch C.R., Gerrard D.J., Tappeiner J.C. II (1975): Exposed crown surface area: A mathematical index of individual tree growth potential. Canadian Journal of Forest Research, 5: 224-228. Go to original source...
  18. Haxtema Z., Temesgen H., Marquardt T. (2012): Evaluation of n-tree distance sampling for inventory of Headwater Riparian Forests of Western Oregon. Western Journal of Applied Forestry, 27: 109-117. Go to original source...
  19. Hosmer D.W.Jr., Lemeshow S. (1999): Applied Survival Analysis. Regression Modeling of Time to Event Data. New York, John Wiley & Sons: 386.
  20. Illian J., Penttinen A., Stoyan H., Stoyan D. (2008): Statistical Analysis and Modelling of Spatial Point Patterns. Chichester, Wiley: 534. Go to original source...
  21. Isham V. (2010): Spatial point process models. In: Gelfand A.E., Diggle P.J., Fuentes M., Guttorp P. (eds): Handbook of Spatial Statistics. Boca Raton, CRC Press /Taylor&Francis: 283-298. Go to original source...
  22. Jianrang W. (1988): Application of plotless sampling method to the warm-temperate deciduous broad-leaved forests. Acta Botanica Boreali-occidentalia Sinica, 1: 7.
  23. Kleinn C. (1996): Ein Vergleich der Effizienz von verschiedenen Clusterformen in forstlichen Grossrauminventuren. Forstwissenschaftliches Centralblatt, 115: 378-390. Go to original source...
  24. Kleinn C., Vilčko F. (2006a): Design-unbiased estimation for point-to-tree distance sampling. Canadian Journal of Forest Research, 36: 1407-1414. Go to original source...
  25. Kleinn C., Vilčko F. (2006b): A new empirical approach for estimation in k-tree sampling. Forest Ecology and Management, 237: 522-533. Go to original source...
  26. Kleinn C., Vilčko F., Fehrmann L., Hradetzky J. (2009): Zur auswertung der k-baum-probe. Allgemeine Forst und Jagdzeitung, 180: 228-237.
  27. Kotz S., Johnson N.L. (1988): Taylor-series linearization. In: Kotz S., Johnson N.L. (eds): Encyclopedia of Statistical Sciences. New York, Wiley: 646-647.
  28. Kronenfeld B.J. (2009): A plotless density estimator based on the asymptotic limit of ordered distance estimation values. Forest Science, 55: 283-292. Go to original source...
  29. Lessard V.C., Drummer T.D., Reed D.D.A. (2002): Precision of density estimates from fixed-radius plots compared to n-tree distance sampling. Forest Science, 48: 1-6. Go to original source...
  30. Lessard V.C., Reed D., Monkevich N. (1994): Comparing n-tree distance sampling with point and plot sampling in northern Michigan forest types. Northern Journal of Applied Forestry, 11: 12-16. Go to original source...
  31. Li Y., Ryan L. (2002): Modeling spatial survival data using semiparametric frailty models. Biometrics, 58: 287-297. Go to original source... Go to PubMed...
  32. Li Y., Ryan L. (2004): Survival analysis with heterogeneous covariate measurement error. Journal of the American Statistical Association, 99: 724-735. Go to original source...
  33. Lynch T.B. (2012): A mirage boundary correction method for distance sampling. Canadian Journal of Forest Research, 42: 272-278. Go to original source...
  34. Lynch T.B., Rusydi R. (1999): Distance sampling for forest inventory in Indonesian teak plantations. Forest Ecology and Management, 113: 215-221. Go to original source...
  35. Lynch T.B., Wittwer R.F. (2003): n-Tree distance sampling for per-tree estimates with application to unequal-sized cluster sampling of increment core data. Canadian Journal of Forest Research, 33: 1189-1195. Go to original source...
  36. Magnussen S. (2012a): Fixed-count density estimation with virtual plots. Spatial Statistics, 2: 33-46. Go to original source...
  37. Magnussen S. (2012b): A new composite k-tree estimator of stem density. European Journal of Forest Research, 131: 1513-1527. Go to original source...
  38. Magnussen S. (2014): Robust fixed-count density estimation with virtual plots. Canadian Journal of Forest Resarch, 44: 377-382. Go to original source...
  39. Magnussen S., Fehrman L., Platt W. (2011): An adaptive composite density estimator for distance sampling. European Journal of Forest Research, 131: 307-320. Go to original source...
  40. Magnussen S., Kleinn C., Picard N. (2008): Two new density estimators for distance sampling. European Journal of Forest Research, 127: 213-224. Go to original source...
  41. Magnussen S., Picard N., Kleinn C. (2008): A Gamma-Poisson distribution of point to k nearest event distance. Forest Science, 54: 429-441. Go to original source...
  42. Mandallaz D. (2008): Sampling Techniques for Forest Inventories. Boca Raton, Chapman and Hall: 251. Go to original source...
  43. McNeill L., Kelly R.D., Barnes D.L. (1977): The use of quadrat and plotless methods in the analysis of the tree and shrub component of woodland vegetation. African Journal of Range and Forage Science, 12: 109-113. Go to original source...
  44. Moore P.G. (1954): Spacing in plant populations. Ecology, 35: 222-227. Go to original source...
  45. Morisita M. (1954): Estimation of Population Density by Spacing Method. Kyushu, University of Kyushu: 187-197.
  46. Morisita M. (1957): A new method for the estimation of density by the spacing method applicable to non-randomly distributed populations. Physiological Ecology, 7: 134-144.
  47. Nielson R.M., Sugihara R.T., Boardman T.J., Engeman R.M. (2004): Optimization of ordered distance sampling. Environmetrics, 15: 119-128. Go to original source...
  48. Nothdurft A., Saborowski J., Nuske R.S., Stoyan D. (2010): Density estimation based on k-tree sampling and point pattern reconstruction. Canadian Journal of Forest Research, 40: 953-967. Go to original source...
  49. Oedekoven C.S., Buckland S.T., Mackenzie M.L., King R., Evans K.O., Burger L.W.J. (2014): Bayesian methods for hierarchical distance sampling models. Journal of Agricultural Biological and Environmental Statistics, 19: 219-239. Go to original source...
  50. Oehlert G.W. (1992): A Note on the delta method. The American Statistician, 46: 27-29. Go to original source...
  51. Ohtomo E. (1971): Theoretical research on plotless sampling methods in forest survey. Bulletin of the Government Forest Experiment Station, 241: 31-164. (in Japanese with English sumary)
  52. Patil S.A., Kovner J.L., Burnham K.P. (1982): Optimum nonparametric estimation of population density based on ordered distances. Biometrics, 35: 597-604. Go to original source...
  53. Payandeh B., Ek A.R. (1986): Distance methods and density estimators. Canadian Journal of Forest Research, 16: 918-924. Go to original source...
  54. Persson O. (1964): Distance methods: The use of distance measurements in the estimation of seedling density and open space frequency. Studia Forestalia Suecica, 15: 1-68.
  55. Picard N., Kouyaté A.M., Dessard H. (2005): Tree density estimations using a distance method in Mali Savanna. Forest Science, 51: 7-18. Go to original source...
  56. Pollard J.H. (1971): On distance estimators of density in randomly distributed forests. Biometrics, 27: 991-1002. Go to original source...
  57. Pommerening A. (2002): Approaches to quantifying forest structures. Forestry, 75: 305-324. Go to original source...
  58. Roser D., Nedwell D.B., Gordon A. (1984): A note on 'plotless' methods for estimating bacterial cell densities. Journal of Applied Bacteriology, 56: 343-347. Go to original source... Go to PubMed...
  59. Schöpfer W. (1967): Ein Stichprobensimulator für Forschung und Lehre. Allgemeine Forst- und Jagdzeitung, 138: 267-273.
  60. Shanks R.E. (1954): Plotless sampling trials in Appalachian forest types. Ecology, 35: 237-244. Go to original source...
  61. Snowdon P. (1991): A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21: 720-724. Go to original source...
  62. Steinke I., Hennenberg K.J. (2006): On the power of plotless density estimators for statistical comparisons of plant populations. Canadian Journal of Botany, 84: 421-433. Go to original source...
  63. Thompson H.R. (1956): Distribution of distance to the n-th neighbour in a population of randomly distributed individuals. Ecology, 37: 394. Go to original source...
  64. White N.A., Engeman R.M., Sugihara R.T., Krupa H.W. (2008): A comparison of plotless density estimators using Monte Carlo simulation on totally enumerated field data sets. BMC Ecology, 8: 6. Go to original source... Go to PubMed...
  65. Wienke A. (2010): Frailty Models in Survival Analysis. Boca Raton, Chapman and Hall/CRC Press: 312. Go to original source...
  66. Zhang T., Zhou B. (2014): Test for the first-order stationarity for spatial point processes in arbitrary regions. Journal of Agricultural, Biological, and Environmental Statistics, 19: 387-404. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.