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based on a survival function
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ABSTRACT: In fixed count sampling (FCS) a fixed number (k) of observations is made at n randomly selected sam-
ple locations. For estimation of stem density, the distance from a random sample location to the k nearest trees was 
measured. It is known that practical FCS estimators of stem density are biased. With the objective of reducing bias 
in FCS estimators of stem density, a new estimator derived from a survival function with distance acting as time was 
presented. To allow for spatial heterogeneity in stem density, the survival function includes shared frailty. Encouraging 
results with k = 6 in terms of bias, root mean squared error (RMSE), and coverage of nominal 95% confidence intervals 
were obtained in an extensive testing with simulated random sampling from 54 actual and four simulated spatial point 
patterns of tree locations. Sample sizes were 9, 15, and 30, with 1200 replications per setting. The performance across 
sites of the new FCS estimator was variable but almost paralleled that of a design-based estimator with fixed area plots. 
Users of the new FCS estimator can expect an absolute relative bias and a root mean squared error that are 1% greater 
than for sampling with fixed area plots holding an average of k trees. The chance of a smaller RMSE with the proposed 
estimator was estimated at 0.44.
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In forestry application of fixed count sampling 
(FCS) a fixed number (k) of trees closest to each of 
n randomly selected sample locations is observed 
and recorded for attributes (Y) of interest (Morisita 
1954; Shanks 1954; Persson 1964; Payandeh, Ek 
1986). Density estimators derived from FCS are biased 
because the inclusion area of the k trees depends on 
the sample location (Moore 1954; Eberhardt 1967; 
Ohtomo 1971; Pollard 1971; Cox 1976). The bias 
can be estimated analytically if and only if the spa-
tial point pattern is consistent with a realization from 
Poisson process (Moore 1954; Pollard 1971) or a 
negative binomial distribution (Eberhardt 1967).  

In difficult terrain and in populations with a high 
and variable local density of elements, the FCS can 
be faster and more expedient than sampling with 
fixed area plots (Cox 1976; McNeill et al. 1977; 
Chen, Tsai 1980; Patil et al. 1982; Roser et al. 
1984; Delince 1986; Jianrang 1988; Lessard 
et al. 1994; Barbour, Gerritsen 1996; Lynch, 
Rusydi 1999; Doberstein et al. 2000; Lessard 
et al. 2002; Picard et al. 2005; Kleinn, Vilčko 
2006b; Haxtema et al. 2012).  

Efforts to address the bias problem in FCS have 
been considerable, especially in the context of for-
est management inventories, and they reflect a 
general interest in this sampling scheme (Persson 
1964; Cox 1976; Kleinn, Vilčko 2006a, b; Mag-
nussen et al. 2008a; Kronenfeld 2009; Noth-
durft et al. 2010; Magnussen et al. 2011, 2012a, b,  
2014). Design-unbiased FCS density estimators are 
possible (Kleinn, Vilčko 2006a; Fehrmann et al. 
2011) but remain impractical.

As a result we now have several alternative FCS 
estimators of stem density, each with a distinct 
performance profile in terms of bias and root mean 
squared error. Although individual studies from a 
few select sites or point patterns have succeeded 
in a significant reduction of the bias problem, it 
should be recognized that the bias problem of-
ten reappears when sampling from a different set 
of spatial point patterns (Magnussen et al. 2011; 
Magnussen 2012b). The seemingly erratic per-
formance of some FCS density estimators deemed 
robust and suitable for a particular set of point 
patterns (Delince 1986; Kleinn, Vilčko 2006b; 
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Kronenfeld 2009) illustrates the complexity and 
difficulty of reducing the bias problem in general.

Five recently proposed and broadly applicable FCS 
stem density estimators (Nothdurft et al. 2010; 
Magnussen et al. 2011; Magnussen 2012a, b;  
Magnussen 2014) appear to have reduced the bias 
to a range (–6 to +6%) where it is likely to be of lim-
ited practical concern in FCS with k-values of 4, 5,  
or 6, and a relatively small sample size (n ≤ 50). 
However, two of the five estimators are of limited 
practical utility as they incur a non-trivial compu-
tational burden (Nothdurft et al. 2010; Mag-
nussen 2012b). Although the bias problem was 
effectively addressed in the remaining three FCS 
density estimators (Magnussen et al. 2011; Mag-
nussen 2012a, 2014), their performance in terms 
of root mean squared error (RMSE) and coverage 
rates of nominal 95% confidence intervals (cCI95) 
still lags behind the performance with a compara-
ble fixed-area plot design. 

In a quest to further reduce bias and improve 
RMSE and cCI95 of FCS density estimators, this 
study proposes a new estimator of stem density 
derived from a parametric survival function (Hos-
mer, Lemeshow 1999) whereby the distance (dij) 
from the ith sample location (i = 1, …, n) to the j 
nearest tree (j = 1, …, k) serves as ‘survival time’. 
Estimation of a parametric survival function pro-
vides a model for the probability of observing a dis-
tance to the 1st, 2nd,…., kth nearest tree equal to or 
less than some user-specified distance. To compute 
an expected ‘survival’ distance and subsequently 
a stem density, one also needs an estimate of the 
probability distribution function of distances in the 
sampled population. A complicating factor, howev-
er, is the common phenomenon of local variation 
in stem density (Clayton, Cox 1986; Picard et al. 
2005; Kronenfeld 2009; Nothdurft et al. 2010). 
In the context of FCS, a local variation in stem den-
sity becomes apparent when the variance in the 
distance to the kth nearest tree is larger than in a 
forest with a Poisson distribution of stem locations 
(Thompson 1956). If the k-nearest trees are con-
sidered as a cluster, a local variation in stem densi-
ty will generate a positive intra-cluster correlation 
among the k distances observed at a single sample 
location. The local variation in stem density can be 
captured in a survival function by adding a random 
''cluster'' effect called frailty (Wienke 2010). Since 
the effect is viewed as shared among the k trees, it 
is called a shared frailty.

The proposed FCS estimator of stem density 
is tested on a set of 54 actual and four simulated 
spatial point patterns of forest tree locations. The 

same point patterns have been used in previous 
assessments of novel FCS estimators of stem den-
sity (Magnussen et al. 2011, 2012a; Magnussen 
2014). A wide variation in the test patterns allows 
a generalization of the performance assessment be-
yond a forest management inventory. 

MATERIAL AND METHODS

The proposed FCS estimator of stem density 
( )( )k

Sλ is designed for simple random sampling 
(SRS) of n sample locations in a finite-area popu-
lation with a countable finite number of trees. At 
each of the n sample locations, the distances from 
the sample location to the k nearest trees are mea-
sured. The proposed estimator takes the same form 
as a maximum likelihood estimator (MLE) of stem 
density in a Poisson point pattern (Pollard 1971). 
However, model-dependent predictions are used in 
place of observed distances. The proposed estima-
tor is given in Equation 1:
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where: 
k 	 – fixed number of trees to include in the sample 

at a random sample point,
c  	 – model-dependent bias correction term, 

nE  	 – expectation over the sample,

ikd  	 – model-dependent prediction of the expected 
distance from a random sample location (i) to 
the k-nearest element, 

( )kV d  	– model-dependent prediction of the variance in 
distances kd  to the kth nearest tree. 

The rationale for using model-dependent predic-
tions in Eq. (1) as opposed to the observed distance 
data rests with an expectation that a modelling of 
distances by a parametric survival function with 
a shared frailty will reduce an otherwise expected 
bias in the MLE estimator for a Poisson forest.

The model-dependent predictions and bias-correc-
tion terms in Eq. (1) were obtained by assuming that 
one minus the cumulative distribution function of 
distances Fij (d) from a random sample location i, to 
the jth nearest tree follows a parametric survival func-
tion with a shared frailty term (Gutierrez 2002). 

The model predictions in Eq. (1) depend on:  
(i) the choice of the parametric survival function; 
and (ii) the choice of a distribution for the assumed 
shared frailty. In practical application an analyst 
may choose to optimize these choices via a maxi-
mum likelihood estimation of model parameters. 
Results in this study are based on a Weibull dis-
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tribution function for distances (F (d) = 1 – exp 
[–τdφ]), and a gamma distribution for the shared 
frailty term (α). This choice was based on prom-
ising results from simulated sampling in four test 
patterns (see the section on test sites) and choices 
available in the streg procedure of the STATA®-13 
software (Stata LP, College Station, Texas) (Guti-
errez 2002). With these choices and the assump-
tion that the Weibull parameter τ is an exponential 
function of the distance order (i.e. j) we have (Eq. 
2): 

Fij (d*) = Pr (dij ≤ d*) = (1 – exp [–τj (d*)φ]i) 	  (2)
with τj = exp [β0 + β1log(j)] and α1~ Gamma (θ–1,θ)

where d* is a user specified distance. Note how the 
random frailty term is specific to a location (i) and 
therefore shared among the distances to the 1, …, kth 
tree at this location. The parameters Ψ = {φ, β0, β1, θ} 
in Eq. (2) were estimated via the method of maximum 
likelihood (ML) (Cleves et al. 2004) using all n × k 
observed distances

 
dij in the likelihood under the as-

sumption of conditional independence of distances 
dij, j = 1, …, k given Ψ and θ. It is important to note 
that the survival function is fitted to all observed dis-
tances. Hence, the expected distance to the kth near-
est tree cannot be derived directly from the survival 
function, it has to be weighted by a probability density 
function of distances to the kth nearest tree. 

Alternative models for τj in Eq. (2) with squared 
and inverse transforms of j within the exponent 
were also explored but without success. A simpler 
approach using a hazard function in place of a sur-
vivor function in Eq. (2) that was also tried, gave a 
much more variable performance.

As mentioned above, the estimated distribution 
function of distances is estimated jointly for all n × k 
distances. A model-dependent prediction of the ex-
pected distance kd  appearing in the estimator ( )ˆ k

Sλ
(see Eq. 1) must therefore be calibrated to the distri-
bution of dk. For the spatial point patterns used in this 
study, a gamma distribution with parameters { },k kγ η  
provides (consistently) a good fit to the distribution 
of dk (Magnussen 2012a). As k increases, the distri-
bution approaches that of a standard gamma distri-
bution ( )ie. 1,fork kγ → → ∞ . With these choices the 
expected distance was computed as (Eq. 3):
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where F'(dk Ψ) is the probability distribution func-
tion of dk, viz. the derivative of the survival func-
tion F. In the integrations, the lower 1% and upper 

99% quantiles of the gamma distribution were used 
as integral limits (dmin, dmax) in an effort to reflect 
a finite domain of tree sizes. The same integration 
procedure was used to compute the expected vari-
ance of kd , viz. ( )kV d . Specifically, the variance 
was computed as the expected value of ( )2

k kd d−   
over the distributions of dk using the same integra-
tion limits as in Eq. (3).

The bias correction term c in Eq. (4) reflects a 
long-standing recognition of the need, in FCS es-
timators of density, to correct the count (k) of ele-
ments within the circle with a radius dk (Moore 
1954; Morisita 1954; Persson 1964; Pollard 
1971; Patil et al. 1982; Delince 1986). Pollard 
(1971) derived a bias correction factor of 1/n for 
the Poisson forest. Moore (1954) suggested a mul-
tiplicative bias correction of (k-1)/k. Kleinn and 
Vilčko (2006b) suggested a bias reduction by us-
ing the geometric mean of the distances to the kth 
and (k–1)th tree. However, these corrections are in-
efficient beyond a few select types of point patterns 
(Kleinn, Vilčko 2006b; Magnussen et al. 2008). 
Instead, the proposed model-dependent bias cor-
rection term c  is the binomial variance of the ‘sur-
vival’ probability of the predicted distance kd . That 
is Equation (4):
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The bias correction in (4) is similar to a bias cor-
rection of the expectation of a log-transformed vari-
able (Baskerville 1972; Snowdon 1991). The ran-
dom location effect (αi) acts akin to a cluster effect 
(Banerjee et al. 2003). If the local density varies at 
random across a surveyed population, distances to 
the 1st, …, kth element at a single sample location will 
be less variable than if the k ordered distances came 
from k randomly selected locations. Both clustered 
and over-dispersed point patterns are likely to ex-
hibit significant location effects (θ > 1). Converse-
ly, a quasi-regular point pattern would exhibit less 
variation than in a random point pattern (θ < 1). As 
θ increases, the variance in distances to the jth near-
est element also increases, and the distribution of dij 
becomes increasingly right-skewed.

During the computations of ( )k
Sλ  for the four sim-

ulated spatial test patterns (see the section on test 
sites) it became clear that very small and very large 
estimates of θ led to extreme and implausible esti-
mates of point density. It was therefore decided to 
trim θ̂ to the interval [0.01, 6.0]. Less than 1.5% of 
208, 800 computed density estimates were affected 
by the trimming.

Ψ

Ψ

θ̂
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A variance estimator for ( )k
Sλ was derived via the del-

ta technique (Kotz, Johnson 1988; Oehlert 1992) 
applied to the estimator in Eq. (1) with ( )2

k kd V d+ 

replaced by the expectation ( )2
kE d computed over 

the gamma distribution ( )ˆ ˆ| ,k k kg d γ η . With the 
delta technique the variance of ( )k

Sλ  is estimated as 
( )( ) ( )2

( ) 2 2variancek
S k kE d E dλ  ∂ ∂ ×  

  . Although good 
results were obtained with this estimator – in terms 
of matching the empirical variance and coverage of 
95% confidence intervals – it did fail on six sites with 
a relatively low stem density and a visible clustering 
of tree locations. The reason for the failure was the 
exponential increase in higher moments in a right-
skewed distribution of distances. Instead, we modi-
fied the variance estimator obtained from the delta 
technique and propose the following more robust and 
conservative estimator of variance
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The term ( )6
kE d in Eq. (5) was computed using 

the same integration employed for computing an 
expectation in (3). 

The computations behind ( )k
Sλ  and ( )( )ˆ k

SV λ  may 
seem daunting; yet attempts at simplifications (e.g. 
dropping the gamma distribution of distances, or 
dispensing with the random location effects) led to 
a significant drop in performance (bias, RMSE, and 
cCI95). For a single sample with n = 15, the time 
required to estimate the MLE of  Ψ̂, and the gamma 
distribution parameters with the software pack-
age STATA®-13 (Cleves et al. 2004) and a typical 
desktop computer is 30–50 s. Generally, computing 
times were proportional to the estimate of θ.

Assessment of performance. The performance 
of the proposed FCS estimator in Eq. (1) was as-
sessed in simulated random sampling in 58 spatial 
point patterns (viz. sites). Performance criteria 
were: bias; root mean squared error (RMSE); how 
well the replication average of the analytical esti-
mator of variance in Eq. (5) tracks (across patterns) 
the corresponding empirical variance in replicated 
estimates of density; and the achieved coverage of 
nominal 95% confidence intervals (cCI95) for the 
true point density. Bias, for a given test pattern and 
sample size n, was estimated as the difference be-
tween the mean of 1,200 estimates of density ( )ˆ

Sλ  
and the known density siteλ . Estimates of bias are 
given in percent of siteλ in order to facilitate com-
parisons across sites (patterns). A RMSE was com-
puted as √(1,200 – 1)–1 ( )212001

,1
ˆ(1200 1) S rep siterep

λ λ−
=

− −∑ . To facilitate 
an among-site comparison, the relative root mean 
squared error (RRMSE) – computed as RMSE di-

vided by siteλ – is reported. Linear regression analy-
sis was employed to assess how well the mean of 
replicated analytical estimates of variance obtained 
from (5) tracked the corresponding empirical esti-
mate of variance across the 58 test patterns (sites). 
The achieved coverage rate of a nominal 95% con-
fidence interval was computed as the proportion of 
computed normal theory confidence intervals (Ca-
sella, Berger 2002) which included siteλ . 

Results obtained with Ŝλ  were compared to results 
with a design-unbiased fixed-area density estimator

FIXλ  as well as to results with two FCS estimators 
of density previously proposed by the author. The 
fixed-area plots used with FIXλ were circular with a 
radius rk that, on a given test pattern (site), included 
an average of k elements. Hence the expected den-
sity is 1 2

kk rπ − − . Because FIXλ  is only nearly asymp-
totically ( )n → ∞  unbiased (Gregoire, Valentine 
2008; Mandallaz 2008), we computed estimates of 
bias and RMSE as done for Ŝλ . This ensures a fair 
comparison, since our sampling protocol and num-
ber of replications (1,200) did not attest a zero bias 
in ˆ

FIXλ . The two alternative FCS estimators used in 
the comparison are called 1V̂λ , 2V̂λ  where the sub-
script V stands for ''virtual fixed area plot'' (Mag-
nussen 2012a); the estimator 2V̂λ was intended as 
a robust version of 1V̂λ (Magnussen 2014). Based 
on results from an intensive testing of both 1V̂λ  
and 2V̂λ  it does not seem presumptuous to con-
sider them as two well performing – in terms of 
bias and RMSE – FCS estimators of density. Al-
though the FCS reconstruction density estimator 

RDEλ  by Nothdurft et al. (2010) is asymptotically 
unbiased, and therefore a natural choice as the cur-
rently best FCS estimator of density; computation-
al complexities deter use in practice and especially 
for this study with a large number of Monte Carlo 
simulations of simple random sampling. In terms 
of RMSE the estimator 2V̂λ holds an edge over RDEλ
(Magnussen 2014). Computational complexities 
equally excluded an otherwise attractive FCS esti-
mator with evidence-based (Akaike’s Information 
Criterion) averaging of maximum-likelihood based 
estimators of density based on 16 different models 
for the spatial distribution of distances to the  kth 
nearest element (Magnussen 2012b).

The 1V̂λ estimator computes density on the basis 
of a virtual fixed area circular plot with a radius 
rv to be computed from the observed distances. A 
generic recursive algorithm is used to predict the 
distance to the k+m nearest element from distances 
to the k+m–1 and k+m–2 nearest elements (k > 2, 
m = 1, …, M). With this algorithm, a prediction of 
the number of elements in a virtual plot with a dis-
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tance to the kth element less than rv is obtained with 
a minimum of computational effort (Magnussen 
2012a). In 2V̂λ predictions of distances to the (k+1)th,  
(k+2)th, …, (k+m)th nearest element are based on 
a nonlinear model of distance ratios 1

1k m k md d −
+ + −×  

(k > 2, m = 1, …, M) derived from a mixture of ob-
served distances and distances predicted with the 
recursive algorithm used in 1V̂λ . The use of actual 
and predicted distances to fit the nonlinear (Pare-
to-type) model of distance ratios was assumed to 
bestow ‘robustness’ to 2V̂λ . The performance profile 
of 1V̂λ  and 2V̂λ – across the same 58 spatial point 
patterns used in this study – was, from a practical 
perspective, however, quite similar.

Simulated fixed count sampling. Fixed count 
sampling from a finite area of spatial point locations 
was simulated with a simple random sampling with-
out replacement (SRS) of n out of N possible loca-
tions on a regular 1 m × 1 m grid suspended over the 
area of interest. At each sample location, the distance  
(d in m) to the nearest k points (elements) is mea-
sured. From a sample of n k× distances the density 

Ŝλ  (elements·m–2) was estimated as per (1) subse-
quent to a MLE of the parameters  Ψ̂ in the survival 
function, and the two parameters ( )ˆ ˆ,k kγ η  for the as-
sumed gamma distribution of distances. A model-de-
pendent estimate of variance in Ŝλ  was obtained via 
Eq. (5), and a normal-theory 95% confidence interval 
was computed by standard techniques (Casella, 
Berger 2002). The process of sampling and estima-
tion was repeated 1,200 times for each sample design 
and test site (1, …, 58).

Sampling designs were limited to sample sizes  
n = 9, 15, and 30. The value of k was fixed at 6. 
Studies with spatial point patterns of tree locations 
(Lynch, Rusydi 1999; Lessard et al. 2002; Lynch, 

Wittwer 2003; Kleinn, Vilčko 2006b; Magnus-
sen 2012b) confirm that FCS designs with k < 6 and 
n < 9 frequently generate unacceptable levels of bias 
(>10%) and unattractive estimates of errors.

To mitigate edge effects in sampling from a finite 
area (Gregoire, Valentine 2008), a selected sam-
ple location within a distance of rk from the border 
of a test site was replaced by a randomly selected 
location from the available N – n choices (Mag-
nussen et al. 2011). This ensures a fixed sample 
size of n. In practice edge effects are mitigated by 
the ‘mirage boundary’ technique (Lynch 2012). 

Test point patterns. Testing of Sλ was done with 
simulated random sampling from 54 actual and 
four simulated point patterns. The four simulated 
point patterns (''random, Matérn, quasi-regular, and 
Strauss'') served the model development. The remain-
ing 54 represent locations of trees (elements) in for-
est sites (stands). Point densities in the test set varied 
from 0.0046 to 0.7361 elements·m–2, and the patterns 
ranged from quasi-regular (plantations) over random 
(Poisson) to strongly clustered. A total of 35 patterns 
were not statistically different from complete spatial 
randomness (csr, Illian et al. 2008), and 23 indicated a 
significant departure from csr (Kolmogorov-Smirnov 
test applied to the distribution of the distances to the 
k nearest element, Conover 1980). Further details 
are provided in (Magnussen 2012b). Nine contrast-
ing point patterns have been displayed in Magnus-
sen et al. (2011). Six additional patterns were dis-
played in (Nothdurft et al. 2010). Additional four 
of the 24 non-random patterns can be found in Mag-
nussen (2014 ). Here the four patterns that gave rise 
to the largest absolute bias with Ŝλ in sampling with  
n = 15 are shown in Figs 1 to 4. It is immediately ap-
parent why sample-based density estimation is a chal-

Fig. 1. Stem locations in a 6.4 ha old spruce stand in Stand 17  
(Schöpfer 1967), stem density 370 ha (site 28)

Fig. 2. Stem map of oak in a stand with a mixture of oak 
and beech (Manderscheid-198, Rheinland-Pfalz (Ger.), 
Pommerening 2002), stem density 125 ha (site 15)

Stand 17
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lenge in these examples. A test of first-order station-
arity in density (Zhang, Zhou 2014) was rejected  
(P < 0.05) in each of the four examples.

RESULTS

We report results from all 58 point patterns sites 
without a distinction between the four simulated pat-
terns used for model building and the 54 actual test 
patterns. There was no evidence to suggest a material 
difference between results from the two groups. Sam-
pling with n = 15 is in focus, whereas results for n = 9, 
and n = 30 are summarily related to the former.  

Bias

Over all test patterns and n = 15, the average esti-
mate of bias in Ŝλ  was –1.0%. Sampling with fixed 
area plots achieved, as expected, the lowest esti-

mate of average bias (–0.5%). Comparable results 
for 1V̂λ and 2V̂λ were estimated at –1.0 and 0.4%. As 
seen in Fig. 5, the range in site-specific estimates of 
bias is wide for all four density estimators. To wit: a 
range from –17 to 11% in ˆ

FIXλ ; from –12 to 12% in
Ŝλ ; from –18 to 9% in 1V̂λ ; and from –14 to 15% in

2V̂λ . Centred intervals including 52 of the 58 point 
patterns (90%) were approximately 25% shorter. In 
terms of site-specific estimates of absolute bias, ˆ

FIXλ  
was again the best (mean 3.3%) followed by nearly 
equal estimates (3.9–4.1%) for Ŝλ , 1V̂λ  and 2V̂λ . Den-
sity estimates with ˆ

FIXλ were the least biased in  
23 cases but also the most biased in 7 cases. Cor-
responding figures were 6 and 17 for Ŝλ , 13 and 13 
for 1V̂λ  and 16 and 21 for 2V̂λ . Estimates of absolute 
bias were strongly correlated among the four es-
timators (0.92 ≤ ρ ≤ 0.95) indicating a great deal 
of parallelism in relative performance. The strong 
correlation is also indicated in Fig. 5, where the 
four estimator-specific scatter in site estimates of 
bias displays a considerable degree of resemblance. 
The four patterns with the highest levels of esti-
mated bias with Ŝλ  (Figs 1–4) were also included in 
the five patterns with the highest estimate of bias in 
ˆ
FIXλ , 1

ˆ ,Vλ  and 2V̂λ .
Estimates of bias in sampling with n = 30 were vir-

tually identical to those for n = 15. Differences were 
less than ± 0.3% and within the range of Monte-Carlo 
errors. Sampling with n = 9, however, resulted in a mi-
nor (2.4%) increase in the average estimate of absolute 
bias in the three FCS density estimators, and a slight 
(1%) increase in the range of estimates of relative 
bias in ˆ

FIXλ . No other result of practical relevance 
emerged from lowering the sample size from 15 to 9.

The estimates of bias in ˆ ,FIXλ , 1
ˆ ,Vλ  and 2V̂λ are high-

er than those previously reported by Magnussen 
(2012a, 2014). Previous studies considered the aver-
age replicate value of ˆ

FIXλ  as the actual true density 
(bias = 0). In this study we recognize that in pat-
terns with a spatially varying density, the required 
number of replications needed to ascertain that the 
bias in ˆ

FIXλ is zero, would be impractically large  
(> 8,000). A practically relevant comparison of per-
formance should therefore recognize, as done here, 
that the estimated bias in ˆ

FIXλ in simulated sam-
pling with a relative small number of replications 
may not be zero. 

Root mean squared errors

The performance with respect to RMSE and  
n = 15 indicated a consistent ranking of the four es-
timators across the 58 patterns (Spearman rank cor-

Fig. 4. Stem locations of maple in a natural stand of maple 
and hickory in East Lansing, MI, USA (Hatch et al. 1975), 
stem density 514 ha (site 11)

Fig. 3. Stem locations in a 3.1 ha stand with beech and shade 
tolerant hardwoods in Germany in stand 84(Schöpfer 
1967), stem density 441 ha (site 51)
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relations of 0.97–0.98). This is also apparent in Fig. 5,  
where the four estimator specific-scatter plots show 
a great degree of resemblance. The overall average 
estimate of relative RMSE was 13% for ˆ ,FIXλ 14% for

Ŝλ  and 1V̂λ  and 16% for 2V̂λ . In 54 patterns the low-
est RMSE was obtained with ˆ ,FIXλ  and the largest 
was obtained with 2V̂λ . In 39 cases Ŝλ  ranked the 
second and 1V̂λ  the third; in 15 cases their rank-
ing was reversed. As for bias, the site-specific es-
timates of relative RMSE varied considerably; from 
5 to 33% with ˆ .FIXλ . Wider and right-shifted ranges 
were obtained with Ŝλ  (5–40%), 1V̂λ  (6–37%), and 

2V̂λ (8–42%). The interquartile range of site-specific 
estimates of relative RMSE was 4% for ˆ

FIXλ  and 5% 
for the FCS estimators. 

With the exception of 1V̂λ  increasing the sample 
size from 15 to 30 achieved approximately (±2%) 
the expected (average) reduction in RMSE of  
(1–2–0.5) × 100% ≅ 29% for an unbiased estimator. 
The reduction for 1V̂λ was only 21%. The reduction 
in RMSE was equally reflected in the range of esti-
mates. Results in terms of rankings were not mate-
rially affected by the increase in sample size.

Lowering the sample size from 15 to 9 increased, 
as expected, the RMSE: least (15%) in ˆ

FIXλ , and most 

(30%) in the FCS estimators. The larger increase in 
FCS estimators reflects a combination of a small in-
crease in bias and a poorer model fit. Apart from the 
increase in RMSE, all trends across sites and ranking 
of estimators were very similar to results with n = 15.

The relative frequency with which an estimate of 
RMSE for Ŝλ  was less than the RMSE estimated for 
ˆ
FIXλ  was 0.44 in this study. Corresponding results 

for 1V̂λ  and 2V̂λ  were 0.43 and 0.42.

Empirical and analytical  
estimates of variance

A linear regression, with the empirical vari-
ance in 1,200 replications of Ŝλ as the dependent 
variable (n = 15), and the average analytical site-
specific estimate of variance as the explanatory 
variable, achieved an adjusted R-squared value of 
0.91, a slope of 1.01 (± 0.04), and a non-significant  
(P = 0.53) intercept of 0.00. Comparable results for
ˆ
FIXλ were: a slope of 0.97 (± 0.004); a non-signif-

icant (P = 0.83) intercept of 0.00; and an adjusted  
R-squared value of 0.99. Regression models for 1V̂λ
and 2V̂λ  had estimated slopes of 1.18 (± 0.01) and 
1.19 (± 0.03), both significantly (P < 0.002) greater than 
1.0. A graphical display of these results is in Fig. 6.  

The above regression results were virtually re-
peated with n = 30. However, with n = 9 the aver-
age of the analytical variance tracked the observed 
variance less well than with n = 15. The explained 

Fig. 5. Bubblechart summaries of estimates of BIAS, 
RMSE, and cCI95 with ˆ

FIXλ (a), Ŝλ (b), 1V̂λ (c) and 2V̂λ (d) es-
timates (grey-tone area of a pie chart indicates cCI95 with 
the black sliver indicating 1-cCI95, overall (sites) means of 
the estimates of BIAS and RMSE are indicated by a black 
dot, horizontal and vertical lines cover an interval from 
the 0.05 to the 0.95 quantile of the site-specific estimates 
of BIAS and RMSE)

Fig. 6. Observed variance of ( )ˆ ˆviz. Vrepλ λ viz. Vrep( ( )ˆ ˆviz. Vrepλ λ) plotted against 
the expected value of the analytical estimator of variance  
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variance dropped by approximately 3%, and es-
timates of slopes were either slightly (4%) lower  
(( )ˆ ˆ,S FIXλ λ ) or slightly (5%) higher (( )1 2

ˆ ˆ,V Vλ λ ). As for  
n =15 and n = 30, no intercept was significantly dif-
ferent from zero.

Achieved coverage rate  
of 95% confidence intervals

Normal theory 95% confidence intervals computed 
on the basis of Ŝλ  and ( )ˆˆ

SV λ  achieved an average cov-
erage of 0.93 (site range: 0.46–1.00). With fixed area 
sampling the average coverage matched the intended 
coverage to within 0.03% but site-specific results var-
ied from 0.57 to 1.00. Computed CI95s from sam-
pling with virtual fixed area plots were in most cases 
too short with an average coverage less than intended 
(88% for 1V̂λ , and 90% for 2V̂λ ). Again, these averages 
cover a wide range (0.54–0.96) of site-specific results.

Increasing the sample size from 15 to 30 increased 
the average coverage of CI95s in all four density es-
timators by approximately 2%. More importantly the 
minimum site-specific coverage improved by 12%. 
When dropping the sample size from 15 to 9, the 
achieved coverage decreased by approximately 4% 
in all four density estimators. Otherwise trends and 
rankings across sites with n = 30 or n = 9 were similar 
to those with n =15.

DISCUSSION

To consider a distance from a randomly selected 
point to the jth nearest trees as a survival time may 
have intuitive appeal but does not, in and by itself, 

offer any advantages in the current context of con-
structing an FCS estimator of stem density. The key 
to the relative success of the new proposed estimator 
rests with the joint estimation of the distribution of 
the j = 1, …, k distances as a function of log(j) and in-
clusion of a random location effect (in density) called 
a shared frailty. A random location effect cannot be 
estimated from just the distances to the kth nearest 
tree. Replications are needed, and here they are in 
the form of all k distances. There are two disadvan-
tages: (i) the location effect is estimated for an en-
semble of ordered distances and not specifically for 
the distance to the kth nearest tree; and (ii) the esti-
mated parametric distribution function of distances 
is conditional on the order (j) of the distance, hence 
estimates of means and variances require a calibra-
tion to the distribution of the kth nearest trees. 

Adopting a survival function modelling frame-
work for an FCS estimator of stem density offers 
an analyst a wide spectrum of flexible survival 
functions and options to exploit auxiliary vari-
ables (Gutierrez 2002; Li, Ryan 2002, 2004; Ba-
nerjee et al. 2003; Wienke 2010). It is known that 
distinct spatial processes generate distinct dis-
tributions of distances to the nearest lth element  
(l = 1, …, k) (Illian et al. 2008; Oedekoven et al. 
2014). For a first-order stationary spatial process 
generating a point pattern, the ensuing point den-
sity is closely linked to the distribution of distanc-
es from a randomly selected location to its k near-
est neighbours. Identifying the link is a complex 
challenge, unless the point process is compatible 
with complete spatial randomness (Thompson 
1956; Isham 2010). In this study, a functional link 
between the four parameters in the survival func-
tion, and the point density of a site was not appar-
ent. Therefore the benefit of a survival function 
was limited to the estimation of the parameter in 
the assumed gamma distribution of the shared 
frailty viz. heterogeneity in local point density. A 
benefit that made the performance of Ŝλ  run al-
most parallel to that of ˆ

FIXλ . A consistent relative 
performance against a benchmark is important 
from a practical perspective. It allows an analyst 
a better informed decision when pros and cons of 
fixed area versus fixed count sampling are consid-
ered. A widely fluctuating performance of simpler 
FSC estimators (Moore 1954; Morisita 1954, 
1957; Persson 1964; Eberhardt 1967; Pollard 
1971; Cox 1976; Delince 1986; Kleinn, Vilčko 
2006b) is an important deterrent except in a few 
cases when an analyst knows what to expect from 
a chosen FSC estimator (Lynch, Rusydi 1999; 
Kleinn et al. 2009).

Fig. 7. Within-site distribution of the estimated variance θ̂  
in shared random effect frailty. The sites are listed in order 
(1 to 58) of processing. The first four are simulated point 
patterns used for the model development
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The use of a survival function in an FCS estima-
tor of stem density may offer some additional tan-
gible advantages, including but not limited to: use 
of density-dependent explanatory variables (Niel-
son et al. 2004); ease of handling censored distanc-
es along borders of a finite area population (Lynch 
2012); including conditional probabilities of obser-
vation (Barbour, Gerritsen 1996; Doberstein 
et al. 2000; Farnsworth et al. 2002).

The variance of the random and shared frailty ef-
fects (θ) was statistically significant in all individual 
estimates, suggesting either a significant over-dis-
persion in local point density (θ < 1) or a significant 
under-dispersion (θ > 1) relative to that of the com-
plete random point pattern. As expected, θ̂ was re-
lated to the among-plot variance of ˆ

FIXλ . For the 58 
sites, a second-degree polynomial with ˆ ( )FIX siteλ  as 
the dependent and log(–̂θ(site)) as the explanatory 
variable achieved an R-squared value of 0.97 with 
all polynomial terms highly significantly different 
from 0 ( t̂  ≥ 15.7, P < 0.00). Larger values of –̂θ (site) 
were indicative of a larger within-site variation in 
local point density. Fig. 7 illustrates, for each site, 
the distribution of estimated values of θ. Sites with 
a quasi-regular point pattern are characterized by 
low values of θ with a mean in the interval [0.25; 
0.5] and an interquartile range of approximately 
0.2. Strongly clustered sites (e.g. 2, 8, 11, and 17) 
display not only a large average value of θ, but 
equally a large among-sample variation in esti-
mates of θ. Presumably θ is also related to Ripley’s 
K-function (Illian et al. 2008) and could therefore 
serve as quantitative indicator of the variance in lo-
cal density. 

Using a survival function facilitated the construc-
tion of a bias-correction term (( )c) intended to coun-
teract the effect of using the predicted area of the 
smallest circle including, on average, the k nearest 
elements at a randomly chosen sample location 
(Pollard 1971; Cox 1976; Delince 1986; Picard 
et al. 2005; Kleinn, Vilčko 2006b). A risk-based 
approach to constructing a bias-correction term 
was adopted (Casella, Berger 2002): The risk of 
using the expected distance as the radius in an as-
sumed fixed area circular plot for the calculation 
of an FCS density estimator was equated to the 
likelihood that the distance is less than expected, 
times the likelihood that it is greater. Attempts to 
replace this risk-based correction term with the 
more familiar 0.5 (Kleinn 1996) only resulted in 
an increase in estimates of bias. 

From a modelling perspective, this study suggests 
that improvements in FCS estimators must come 
from not only in modelling the distribution of dis-

tances but also the within-site variance in local den-
sity. A direct modelling of the latter in the form of a 
marginal distribution of density has met with mixed 
results (Magnussen et al. 2008b; Magnussen 
2012b). Estimating the distribution of frailty appears 
more promising. A side-effect of estimating a model 
for frailty and a model for distances is the increase in 
the number of parameters to be estimated. This puts 
upward pressure on the required minimum sample 
size for obtaining results with an acceptable preci-
sion. Results from this study suggest a minimum 
sample size of 12 for the proposed estimator.

The proposed FCS estimator of density appears to 
hold a small but important advantage over existing 
practical FCS alternatives, at least in terms of RMSE 
and cCI95, which are important to both an analyst 
as well as to users of FCS results. While the marginal 
advantages across 58 point patterns may seem slim, 
the correlation among results with ˆ

FIXλ  and Ŝλ  was 
considerably stronger than with the alternatives. 

The reported performance of Ŝλ has been quanti-
fied in terms of averages across sites. However, a 
strong correlation among site-specific results with
ˆ
FIXλ  and Ŝλ supports the expectation of stability in 

relative performance. Nevertheless, the wide range 
in performances of the four estimators across sites 
is an area of concern. The poor performance of all 
four estimators on a handful of sites – with either a 
large amount of within-site variation in local point 
density or a patchy mosaic of areas with distinct 
differences in point density – reflects that a precise 
and an accurate estimate of density from such sites 
is only possible with large samples (e.g. n > 100).

The large variation in the 58 spatial point patterns 
used in this study vouches for a robust assessment of 
the proposed FCS estimator of density and allows a 
generalization of the results to practice, not only in 
forestry, but also to surveys in biology and ecology 
where FCS can be attractive (Doberstein et al. 2000; 
Picard et al. 2005; Steinke, Hennenberg 2006; 
White et al. 2008).
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