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A fixed count sampling estimator of stem density
based on a survival function
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ABSTRACT: In fixed count sampling (FCS) a fixed number (k) of observations is made at # randomly selected sam-
ple locations. For estimation of stem density, the distance from a random sample location to the k nearest trees was
measured. It is known that practical FCS estimators of stem density are biased. With the objective of reducing bias
in FCS estimators of stem density, a new estimator derived from a survival function with distance acting as time was
presented. To allow for spatial heterogeneity in stem density, the survival function includes shared frailty. Encouraging
results with k = 6 in terms of bias, root mean squared error (RMSE), and coverage of nominal 95% confidence intervals
were obtained in an extensive testing with simulated random sampling from 54 actual and four simulated spatial point
patterns of tree locations. Sample sizes were 9, 15, and 30, with 1200 replications per setting. The performance across
sites of the new FCS estimator was variable but almost paralleled that of a design-based estimator with fixed area plots.
Users of the new FCS estimator can expect an absolute relative bias and a root mean squared error that are 1% greater

than for sampling with fixed area plots holding an average of k trees. The chance of a smaller RMSE with the proposed

estimator was estimated at 0.44.
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In forestry application of fixed count sampling
(FCS) a fixed number (k) of trees closest to each of
n randomly selected sample locations is observed
and recorded for attributes (Y) of interest (MORISITA
1954; SHANKS 1954; PERSSON 1964; PAYANDEH, Ex
1986). Density estimators derived from FCS are biased
because the inclusion area of the k trees depends on
the sample location (MOORE 1954; EBERHARDT 1967;
OHTOMO 1971; POLLARD 1971; Cox 1976). The bias
can be estimated analytically if and only if the spa-
tial point pattern is consistent with a realization from
Poisson process (MOORE 1954; POLLARD 1971) or a
negative binomial distribution (EBERHARDT 1967).

In difficult terrain and in populations with a high
and variable local density of elements, the FCS can
be faster and more expedient than sampling with
fixed area plots (Cox 1976; McNEILL et al. 1977;
CHEN, TsA1 1980; PATIL et al. 1982; ROSER et al.
1984; DELINCE 1986; JIANRANG 1988; LESSARD
et al. 1994; BARBOUR, GERRITSEN 1996; LYNCH,
Rusypr 1999; DOBERSTEIN et al. 2000; LESSARD
et al. 2002; PicARD et al. 2005; KLEINN, VILCKO
2006b; HAXTEMA et al. 2012).
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Efforts to address the bias problem in FCS have
been considerable, especially in the context of for-
est management inventories, and they reflect a
general interest in this sampling scheme (PERSSON
1964; Cox 1976; KLEINN, VILCKO 2006a, b; MAG-
NUSSEN et al. 2008a; KRONENFELD 2009; NOTH-
DURFT et al. 2010; MAGNUSSEN etal. 2011,2012a, b,
2014). Design-unbiased FCS density estimators are
possible (KLEINN, VILCKO 2006a; FEHRMANN et al.
2011) but remain impractical.

As a result we now have several alternative FCS
estimators of stem density, each with a distinct
performance profile in terms of bias and root mean
squared error. Although individual studies from a
few select sites or point patterns have succeeded
in a significant reduction of the bias problem, it
should be recognized that the bias problem of-
ten reappears when sampling from a different set
of spatial point patterns (MAGNUSSEN et al. 2011;
MAGNUSSEN 2012b). The seemingly erratic per-
formance of some FCS density estimators deemed
robust and suitable for a particular set of point
patterns (DELINCE 1986; KLEINN, VILCKO 2006b;
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KrRONENFELD 2009) illustrates the complexity and
difficulty of reducing the bias problem in general.

Fiverecently proposed and broadly applicable FCS
stem density estimators (NOTHDURFT et al. 2010;
MAGNUSSEN et al. 2011; MAGNUSSEN 2012a, b;
MAGNUSSEN 2014) appear to have reduced the bias
to arange (-6 to +6%) where it is likely to be of lim-
ited practical concern in FCS with k-values of 4, 5,
or 6, and a relatively small sample size (1 < 50).
However, two of the five estimators are of limited
practical utility as they incur a non-trivial compu-
tational burden (NOTHDURFT et al. 2010; MAG-
NUSSEN 2012b). Although the bias problem was
effectively addressed in the remaining three FCS
density estimators (MAGNUSSEN et al. 2011; MAG-
NUSSEN 2012a, 2014), their performance in terms
of root mean squared error (RMSE) and coverage
rates of nominal 95% confidence intervals (cCI95)
still lags behind the performance with a compara-
ble fixed-area plot design.

In a quest to further reduce bias and improve
RMSE and cCI95 of FCS density estimators, this
study proposes a new estimator of stem density
derived from a parametric survival function (Hos-
MER, LEMESHOW 1999) whereby the distance (di],)
from the it sample location (i = 1, ..., ) to the j
nearest tree (j = 1, ..., k) serves as ‘survival time’
Estimation of a parametric survival function pro-
vides a model for the probability of observing a dis-
tance to the 1%, 2"4,...., k" nearest tree equal to or
less than some user-specified distance. To compute
an expected ‘survival’ distance and subsequently
a stem density, one also needs an estimate of the
probability distribution function of distances in the
sampled population. A complicating factor, howev-
er, is the common phenomenon of local variation
in stem density (CLAYTON, Cox 1986; PICARD et al.
2005; KRONENFELD 2009; NOTHDUREFT et al. 2010).
In the context of FCS, a local variation in stem den-
sity becomes apparent when the variance in the
distance to the k™ nearest tree is larger than in a
forest with a Poisson distribution of stem locations
(THOMPSON 1956). If the k-nearest trees are con-
sidered as a cluster, a local variation in stem densi-
ty will generate a positive intra-cluster correlation
among the k distances observed at a single sample
location. The local variation in stem density can be
captured in a survival function by adding a random
"cluster" effect called frailty (WiENKE 2010). Since
the effect is viewed as shared among the k trees, it
is called a shared frailty.

The proposed FCS estimator of stem density
is tested on a set of 54 actual and four simulated
spatial point patterns of forest tree locations. The
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same point patterns have been used in previous
assessments of novel FCS estimators of stem den-
sity (MAGNUSSEN et al. 2011, 2012a; MAGNUSSEN
2014). A wide variation in the test patterns allows
a generalization of the performance assessment be-
yond a forest management inventory.

MATERIAL AND METHODS

The proposed FCS estimator of stem density
(i;k)) is designed for simple random sampling
(SRS) of n sample locations in a finite-area popu-
lation with a countable finite number of trees. At
each of the n sample locations, the distances from
the sample location to the k nearest trees are mea-
sured. The proposed estimator takes the same form
as a maximum likelihood estimator (MLE) of stem
density in a Poisson point pattern (POLLARD 1971).
However, model-dependent predictions are used in
place of observed distances. The proposed estima-
tor is given in Equation 1:

k-c¢ k-c¢

A == s (1)
7E,[d; ] H(En (4] + V(dk))

where:

k — fixed number of trees to include in the sample

at a random sample point,

é — model-dependent bias correction term,

E, — expectation over the sample,

‘?ik — model-dependent prediction of the expected

distance from a random sample location (i) to
the k-nearest element,

V(dk) — model-dependent prediction of the variance in
distancesd, to the k' nearest tree.

The rationale for using model-dependent predic-
tions in Eq. (1) as opposed to the observed distance
data rests with an expectation that a modelling of
distances by a parametric survival function with
a shared frailty will reduce an otherwise expected
bias in the MLE estimator for a Poisson forest.

The model-dependent predictions and bias-correc-
tion terms in Eq. (1) were obtained by assuming that
one minus the cumulative distribution function of
distances F, (d) from a random sample location i, to
the jth nearest tree follows a parametric survival func-
tion with a shared frailty term (GUTIERREZ 2002).

The model predictions in Eq. (1) depend on:
(i) the choice of the parametric survival function;
and (i) the choice of a distribution for the assumed
shared frailty. In practical application an analyst
may choose to optimize these choices via a maxi-
mum likelihood estimation of model parameters.
Results in this study are based on a Weibull dis-
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tribution function for distances (F (d) = 1 — exp
[-1d?]), and a gamma distribution for the shared
frailty term (a). This choice was based on prom-
ising results from simulated sampling in four test
patterns (see the section on test sites) and choices
available in the streg procedure of the STATA®-13
software (Stata LP, College Station, Texas) (GUTI-
ERREZ 2002). With these choices and the assump-
tion that the Weibull parameter T is an exponential
function of the distance order (i.e. j) we have (Eq.
2):

F,;(d") =

i

with T, = exp |30+ B,log(j)

Pr(d,<d* = (1 - exp [-1; (d)°]) (2)
)] and o ~ Gamma (6-1,0)

where d* is a user specified distance. Note how the
random frailty term is specific to a location (i) and
therefore shared among the distances to the 1, ..., k'
tree at this location. The parameters ¥ = {¢, B, B,, 0}
in Eq. (2) were estimated via the method of maximum
likelihood (ML) (CLEVES et al. 2004) using all n x k
observed distances dl,], in the likelihood under the as-
sumption of conditional independence of distances
dyj=1,..., kgiven ¥ and 6. It is important to note
that the survival function is fitted to all observed dis-
tances. Hence, the expected distance to the A near-
est tree cannot be derived directly from the survival
function, it has to be weighted by a probability density
function of distances to the k'™ nearest tree.

Alternative models for Tin Eq. (2) with squared
and inverse transforms of j within the exponent
were also explored but without success. A simpler
approach using a hazard function in place of a sur-
vivor function in Eq. (2) that was also tried, gave a
much more variable performance.

As mentioned above, the estimated distribution
function of distances is estimated jointly for all # x k
distances. A model-dependent prediction of the ex-
pected distance d appearing in the estimator 1"’
(see Eq. 1) must therefore be calibrated to the dlStrl-
bution of d,. For the spatial point patterns used in this
study, a gamma distribution with parameters {y,,7, }
provides (consistently) a good fit to the distribution
of d, (MAGNUSSEN 2012a). As k increases, the distri-
bution approaches that of a standard gamma distri-
bution (ie. 7, — 1,fork — ). With these choices the
expected distance was computed as (Eq. 3):

jd F'(d, %) g(d, 17,.3,)dd,
P 3)

max

1- '[ F'(dk |‘i’)g(dk |7;k’ﬁk)ddk

d,

‘min

where F'(d,| V) is the probability distribution func-
tion of d,, viz. the derivative of the survival func-
tion F. In the integrations, the lower 1% and upper
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99% quantiles of the gamma distribution were used
as integral limits (d_, , d__ ) in an effort to reflect
a finite domain of tree sizes. The same integration
procedure was used to compute the expected vari-
ance of d,, viz. V(d,). Specifically, the variance
was computed as the expected value of (dk —dk)
over the distributions of d, using the same integra-
tion limits as in Eq. (3).

The bias correction term ¢ in Eq. (4) reflects a
long-standing recognition of the need, in FCS es-
timators of density, to correct the count (k) of ele-
ments within the circle with a radius d, (MOORE
1954; MoORISITA 1954; PERSSON 1964; POLLARD
1971; PATIL et al. 1982; DELINCE 1986). POLLARD
(1971) derived a bias correction factor of 1/u for
the Poisson forest. MOORE (1954) suggested a mul-
tiplicative bias correction of (k-1)/k. KLEINN and
VIiLCKO (2006b) suggested a bias reduction by us-
ing the geometric mean of the distances to the k'
and (k—1)™ tree. However, these corrections are in-
efficient beyond a few select types of point patterns
(KLEINN, VILEKO 2006b; MAGNUSSEN et al. 2008).
Instead, the proposed model-dependent bias cor-
rection term ¢ is the binomial variance of the ‘sur-
vival’ probability of the predicted distanced,. That
is Equation (4):

D)

&=Pr(d, <d,)(1-Pr(d, <
—exp fja?,‘f))

The bias correction in (4) is similar to a bias cor-
rection of the expectation of a log-transformed vari-
able (BASKERVILLE 1972; SNOWDON 1991). The ran-
dom location effect (a,) acts akin to a cluster effect
(BANERJEE et al. 2003). If the local density varies at
random across a surveyed population, distances to
the 1%, ..., k" element at a single sample location will
be less variable than if the k ordered distances came
from k randomly selected locations. Both clustered
and over-dispersed point patterns are likely to ex-
hibit significant location effects (6 > 1). Converse-
ly, a quasi-regular point pattern would exhibit less
variation than in a random point pattern (0 < 1). As
8 increases, the variance in distances to the j™ near-
est element also increases, and the distribution of
becomes increasingly right-skewed.

During the computations of l;k) for the four sim-
ulated spatial test patterns (see the section on test
sites) it became clear that very small and very large
estimates of 8 led to extreme and implausible esti-
mates of point density. It was therefore decided to
trim 8 to the interval [0.01, 6.0]. Less than 1.5% of
208, 800 computed density estimates were affected
by the trimming.

(4)

<d
with Pr(d, <d )_1—élog(
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A variance estimator for A{”was derived via the del-
ta technique (KoTz, JoHNSON 1988; OEHLERT 1992)
applied to the estimator in Eq. (1) with c?,f +I7(dk)
replaced by the expectation E (d ) computed over
the gamma distribution g(Jk | fk,ﬁk). With the
delta technique the variance of A is" estimated as
(axiék)/aE (d~,f )) x variance[E (d~,f) . Although good
results were obtained with this estimator — in terms
of matching the empirical variance and coverage of
95% confidence intervals — it did fail on six sites with
a relatively low stem density and a visible clustering
of tree locations. The reason for the failure was the
exponential increase in higher moments in a right-
skewed distribution of distances. Instead, we modi-
fied the variance estimator obtained from the delta
technique and propose the following more robust and
conservative estimator of variance

sy Hk=8) V(d,)
) ety

(5)

The term E(d,f)in Eq. (5) was computed using
the same integration employed for computing an
expectation in (3).

The computations behind A\ and V(ﬂ:;")) may
seem daunting; yet attempts at simplifications (e.g.
dropping the gamma distribution of distances, or
dispensing with the random location effects) led to
a significant drop in performance (bias, RMSE, and
cCI95). For a single sample withAn = 15, the time
required to estimate the MLE of ¥, and the gamma
distribution parameters with the software pack-
age STATA®-13 (CLEVES et al. 2004) and a typical
desktop computer is 30—50 s. Generally, computing
times were proportional to the estimate of 6.

Assessment of performance. The performance
of the proposed FCS estimator in Eq. (1) was as-
sessed in simulated random sampling in 58 spatial
point patterns (viz. sites). Performance criteria
were: bias; root mean squared error (RMSE); how
well the replication average of the analytical esti-
mator of variance in Eq. (5) tracks (across patterns)
the corresponding empirical variance in replicated
estimates of density; and the achieved coverage of
nominal 95% confidence intervals (cCI95) for the
true point density. Bias, for a given test pattern and
sample size n, was estimated as the difference be-
tween the mean of 1,200 estimates of density fs
and the known density 4. Estimates of bias are
given in percent of A _in order to facilitate com-
parisons across sites (patterns). A RMSE was com-
puted as V(1,200 — 1)1 (4, -4.). To facilitate
an among-site comparison, the relative root mean
squared error (RRMSE) — computed as RMSE di-
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vided by A, — is reported. Linear regression analy-
sis was employed to assess how well the mean of
replicated analytical estimates of variance obtained
from (5) tracked the corresponding empirical esti-
mate of variance across the 58 test patterns (sites).
The achieved coverage rate of a nominal 95% con-
fidence interval was computed as the proportion of
computed normal theory confidence intervals (Ca-
SELLA, BERGER 2002) which included 4.

Results obtained with /{S were compared to results
with a design-unbiased fixed-area density estimator
A as well as to results with two FCS estimators
of density previously proposed by the author. The
fixed-area plots used with A, were circular with a
radius r, that, on a given test pattern (site), included
an average of k elements. Hence the expected den-
sity is kz~'r;”. Because A, is only nearly asymp-
totically (n - oo) unbiased (GREGOIRE, VALENTINE
2008; MANDALLAZ 2008), we computed estimates of
bias and RMSE as done for A¢. This ensures a fair
comparison, since our sampling protocol and num-
ber of replications (1,200) did not attest a zero bias
in /iFIX. The two alternative FCS estimators used in
the comparison are called ﬂ}l , ZAVZ where the sub-
script V stands for "virtual fixed area plot" (MAG-
NUSSEN 2012a); the _estimator /{m was intended as
a robust version of 4, (MAGNUSSEN 2014). Based
on results from an intensive testing of both ﬂ;,l
and 4,, it does not seem presumptuous to con-
sider them as two well performing — in terms of
bias and RMSE — FCS estimators of density. Al-
though the FCS reconstruction density estimator
Agpr by NOTHDURET et al. (2010) is asymptotically
unbiased, and therefore a natural choice as the cur-
rently best FCS estimator of density; computation-
al complexities deter use in practice and especially
for this study with a large number of Monte Carlo
simulations of simple random sampling. In terms
of RMSE the estimator A, holds an edge over A,,,
(MAGNUSSEN 2014). Computational complexities
equally excluded an otherwise attractive FCS esti-
mator with evidence-based (Akaike’s Information
Criterion) averaging of maximum-likelihood based
estimators of density based on 16 different models
for the spatial distribution of distances to the k™
nearest element (MAGNUSSEN 2012b).

The }:m estimator computes density on the basis
of a virtual fixed area circular plot with a radius
r, to be computed from the observed distances. A
generic recursive algorithm is used to predict the
distance to the k+m nearest element from distances
to the k+m—1 and k+m—-2 nearest elements (k > 2,
m =1, ..., M). With this algorithm, a prediction of
the number of elements in a virtual plot with a dis-
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Fig. 1. Stem locations in a 6.4 ha old spruce stand in Stand 17
(ScHOPFER 1967), stem density 370 ha (site 28)

tance to the k™ element less than r, is obtained with
a minimum of computational effort (MAGNUSSEN
2012a). In A,,, predictions of distances to the (k+1)™,
(k+2)™, ..., (k+m)™ nearest element are based on
a nonlinear model of distance ratios d, ><d,;+lm_1
(k>2,m=1, ..., M) derived from a mixture of ob-
served distances and distances predicted with the
recursive algorithm used in 4,,. The use of actual
and predicted distances to fit the nonlinear (Pare-
to-type) model of distance ratios was assumed to
bestow ‘robustness’ to 4,,,. The performance profile
of A,, and 4,, - across the same 58 spatial point
patterns used in this study — was, from a practical
perspective, however, quite similar.

Simulated fixed count sampling. Fixed count
sampling from a finite area of spatial point locations
was simulated with a simple random sampling with-
out replacement (SRS) of n out of N possible loca-
tions on a regular 1 m x 1 m grid suspended over the
area of interest. At each sample location, the distance
(d in m) to the nearest k points (elements) is mea-
sured. From a sample of nx k distances the density
As (elements-m™2) was estimated as per (1) subse-
quent to a MLE of the parameters ¥ in the survival
function, and the two parameters (7,,7, ) for the as-
sumed gamma distribution of distances. A model-de-
pendent estimate of variance in /{S was obtained via
Eq. (5), and a normal-theory 95% confidence interval
was computed by standard techniques (CASELLA,
BERGER 2002). The process of sampling and estima-
tion was repeated 1,200 times for each sample design
and test site (1, ..., 58).

Sampling designs were limited to sample sizes
n =9, 15, and 30. The value of k was fixed at 6.
Studies with spatial point patterns of tree locations
(LyNcH, Rusypi 1999; LESSARD et al. 2002; LYNCH,
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WITTWER 2003; KLEINN, VILCKO 2006b; MAGNUS-
SEN 2012b) confirm that FCS designs with k < 6 and
n < 9 frequently generate unacceptable levels of bias
(>10%) and unattractive estimates of errors.

To mitigate edge effects in sampling from a finite
area (GREGOIRE, VALENTINE 2008), a selected sam-
ple location within a distance of r, from the border
of a test site was replaced by a randomly selected
location from the available N — n choices (MAG-
NUSSEN et al. 2011). This ensures a fixed sample
size of n. In practice edge effects are mitigated by
the ‘mirage boundary’ technique (LyncH 2012).

Test point patterns. Testing of 1;was done with
simulated random sampling from 54 actual and
four simulated point patterns. The four simulated
point patterns ("random, Matérn, quasi-regular, and
Strauss") served the model development. The remain-
ing 54 represent locations of trees (elements) in for-
est sites (stands). Point densities in the test set varied
from 0.0046 to 0.7361 elements-m~2, and the patterns
ranged from quasi-regular (plantations) over random
(Poisson) to strongly clustered. A total of 35 patterns
were not statistically different from complete spatial
randomness (csr, ILLIAN et al. 2008), and 23 indicated a
significant departure from csr (Kolmogorov-Smirnov
test applied to the distribution of the distances to the
k nearest element, CONOVER 1980). Further details
are provided in (MAGNUSSEN 2012b). Nine contrast-
ing point patterns have been displayed in MAGNUSs-
SEN et al. (2011). Six additional patterns were dis-
played in (NOTHDUREFT et al. 2010). Additional four
of the 24 non-random patterns can be found in MAG-
NUSSEN (2014 ). Here the four patterns that gave rise
to the largest absolute bias with A¢in sampling with
n = 15 are shown in Figs 1 to 4. It is immediately ap-
parent why sample-based density estimation is a chal-
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g 40 . L . . o o *
. . e *
. . . ®
20 e S . hd . ¢ .
°° .. ¢ ° . : L .
0 20 40 60 80
m

Fig. 2. Stem map of oak in a stand with a mixture of oak
and beech (Manderscheid-198, Rheinland-Pfalz (Ger.),
POMMERENING 2002), stem density 125 ha (site 15)
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Stand 84

Fig. 3. Stem locations in a 3.1 ha stand with beech and shade
tolerant hardwoods in Germany in stand 84(SCHOPFER
1967), stem density 441 ha (site 51)

lenge in these examples. A test of first-order station-
arity in density (ZHANG, ZHoU 2014) was rejected
(P < 0.05) in each of the four examples.

RESULTS

We report results from all 58 point patterns sites
without a distinction between the four simulated pat-
terns used for model building and the 54 actual test
patterns. There was no evidence to suggest a material
difference between results from the two groups. Sam-
pling with 7 = 15 is in focus, whereas results for n = 9,
and # = 30 are summarily related to the former.

Bias
Over all test patterns and # = 15, the average esti-

mate of bias in }:S was —1.0%. Sampling with fixed
area plots achieved, as expected, the lowest esti-

100
80 <o
. s .
60 ) .
. >
£ ) \ "
40
-t . 3]
200 . wn -
. R Ll
0 20 40 60 80 100

Fig. 4. Stem locations of maple in a natural stand of maple
and hickory in East Lansing, MI, USA (HATCH et al. 1975),
stem density 514 ha (site 11)
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mate of average bias (-0.5%). Comparable results
for 2,,,1 and /1,,2 were estimated at —1.0 and 0.4%. As
seen in Fig. 5, the range in site-specific estimates of
bias is wide for all four density estimators. To wit: a
range from —17 to 11% i in AFIX; from —12 to 12% in
/1 from —18 to 9% in 4 1 and from —14 to 15% in
2,[,2. Centred intervals including 52 of the 58 point
patterns (90%) were approximately 25% shorter. In
terms of site-specific estimates of absolute bias, ﬂtm
was again the best (mean 3.3%) followed by nearly
equal estimates (3.9-4.1%) for ﬁ,s, /11,1 and ﬂm Den-
sity estimates with ﬂm were the least biased in
23 cases but also the most biased in 7 cases. Cor-
responding figures were 6 and 17 for/l 13 and 13
for ),Vl and 16 and 21 for /11/2 Estlmates of absolute
bias were strongly correlated among the four es-
timators (0.92 < p < 0.95) indicating a great deal
of parallelism in relative performance. The strong
correlation is also indicated in Fig. 5, where the
four estimator-specific scatter in site estimates of
bias displays a considerable degree of resemblance.
The four patterns with the highest levels of esti-
mated bias with ﬂ, (Figs 1-4) were also included in
the five patterns w1th the highest estimate of bias in

F[X’ ﬂ*Vl and ﬂvz

Estimates of bias in sampling with » = 30 were vir-
tually identical to those for n = 15. Differences were
less than + 0.3% and within the range of Monte-Carlo
errors. Sampling with # = 9, however, resulted in a mi-
nor (2.4%) increase in the average estimate of absolute
bias in the three FCS density estimators, and a slight
(1%) increase in the range of estimates of relative
bias in /IF,X. No other result of practical relevance
emerged from lowering the sample size from 15 to 9.

The estimates of bias in ):F,X, ﬂ;,l and im are high-
er than those previously reported by MAGNUSSEN
(2012a, 2014). Previous studies considered the aver-
age replicate value of ﬂcm as the actual true density
(bias = 0). In this study we recognize that in pat-
terns with a spatially varying density, the required
number of replications needed to ascertain that the
bias in AFIX is zero, would be impractically large
(> 8,000). A practically relevant comparison of per-
formance should therefore rgcognize, as done here,
that the estimated bias in A, in simulated sam-
pling with a relative small number of replications

may not be zero.

Root mean squared errors
The performance with respect to RMSE and

n =15 indicated a consistent ranking of the four es-
timators across the 58 patterns (Spearman rank cor-

J. FOR. SCL, 61, 2015 (11): 485-495



a 7 b
( )35 - (b) A
Ll .
35
=25 B
< © 1
(L\/J) 25 28 *
<2 39 ©
® ° e
~ 15 15 %
1582 °
D) 9@9 &
5 5 P
-10 -5 /\0 5 10 -15 -10 —E 0 5 10
Bias (%) Bias (%)
© i, @ i
® ®
35
35
= 25 7
75 25
A
=
~ 15 15
5 5

-20 -15 -10 -5 0 5 10
Blas (%)

-15-10 -5 0 5 10 15
Bias (%)

Fig. 5. Bubblechart summaries of estimates of BIAS,
RMSE, and cCI95 with 4,,,(a), A(b), 4,,(c) and 4,,(d) es-
timates (grey-tone area of a pie chart indicates cCI95 with
the black sliver indicating 1-cCI95, overall (sites) means of
the estimates of BIAS and RMSE are indicated by a black
dot, horizontal and vertical lines cover an interval from
the 0.05 to the 0.95 quantile of the site-specific estimates
of BIAS and RMSE)

relations 0f 0.97-0.98). This isalso apparent in Fig. 5,
where the four estimator specific-scatter plots show
a great degree of resemblance. The overall average
estimate of relative RMSE was 13% for ﬂF,XléM) for
l and l , and 16% for ﬂm In 54 patterns the low-
est RMSE was obtained with ﬂm and the largest
was obtained with ﬂm In 39 cases ﬂ. ranked the
second and /1V1 the third; in 15 cases their rank-
ing was reversed. As for bias, the site-specific es-
timates of relative RMSE varied considerably; from
5 to 33% with /1F1X Wider and right-shifted ranges
were obtained with /"t (5-40%), ﬂ,,,l (6—-37%), and
272(8 —-42%). The mterquartlle range of site-specific
estimates of relative RMSE was 4% for /IF,X and 5%
for the FCS estimators.

With the exception of 4,, increasing the sample
size from 15 to 30 achieved approximately (+2%)
the expected (average) reduction in RMSE of
(1-279%) x 100% = 29% for an unbiased estimator.
The reduction for A, was only 21%. The reduction
in RMSE was equally reflected in the range of esti-
mates. Results in terms of rankings were not mate-
rially affected by the increase in sample size.

Lowering the sample size from 15 to 9 increased,
as expected, the RMSE: least (15%) in A,,,, and most
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(30%) in the FCS estimators. The larger increase in
FCS estimators reflects a combination of a small in-
crease in bias and a poorer model fit. Apart from the
increase in RMSE, all trends across sites and ranking
of estimators were very similar to results with n = 15.

The relative frequency with which an estimate of
RMSE for A, was less than the RMSE estimated for
App was 0.44 in this study. Corresponding results
for A, and 4., were 0.43 and 0.42.

Empirical and analytical
estimates of variance

A linear regression, with the empirical vari-
ance in 1,200 replications of/1 as the dependent
variable (n = 15), and the average analytical site-
specific estimate of variance as the explanatory
variable, achieved an adjusted R-squared value of
0.91, a slope of 1.01 (+ 0.04), and a non-significant
(P = 0.53) intercept of 0.00. Comparable results for
Ay Were: a slope of 0.97 (+ 0.004); a non-signif-
icant (P = 0.83) intercept of 0.00; and an adjusted
R-squared value of 0.99. Regression models for 4,
and A, had estimated slopes of 1.18 (+ 0.01) and
1.19 (+ 0.03), both significantly (P < 0.002) greater than
1.0. A graphical display of these results is in Fig. 6.

The above regression results were virtually re-
peated with # = 30. However, with #n = 9 the aver-
age of the analytical variance tracked the observed
variance less well than with # = 15. The explained
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Fig. 6. Observed variance of A viz. Vrep(/?t) plotted against
the expected value of the analytical estimator of variance
(1:"rep [7(2)]), dashed one-to-one line is added as a visual aide
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variance dropped by approximately 3%, and es-
timates of slopes were either slightly (4%) lower
(ﬂ:s,/iFIX) or slightly (5%) higher (4,,,4,,). As for
n =15 and n = 30, no intercept was significantly dif-
ferent from zero.

Achieved coverage rate
of 95% confidence intervals

Normal theory 95% confidence intervals computed
on the basis of A, and 14 A Jachieved an average cov-
erage of 0.93 (site range: 0.46—1.00). With fixed area
sampling the average coverage matched the intended
coverage to within 0.03% but site-specific results var-
ied from 0.57 to 1.00. Computed CI95s from sam-
pling with virtual fixed area plots were in most cases
too short with an average coverage less than intended
(88% for im, and 90% for ZA,VZ). Again, these averages
cover a wide range (0.54—0.96) of site-specific results.

Increasing the sample size from 15 to 30 increased
the average coverage of CI95s in all four density es-
timators by approximately 2%. More importantly the
minimum site-specific coverage improved by 12%.
When dropping the sample size from 15 to 9, the
achieved coverage decreased by approximately 4%
in all four density estimators. Otherwise trends and
rankings across sites with # = 30 or n = 9 were similar
to those with n =15.

DISCUSSION

To consider a distance from a randomly selected
point to the j™ nearest trees as a survival time may
have intuitive appeal but does not, in and by itself,
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Fig. 7. Within-site distribution of the estimated variance 0
in shared random effect frailty. The sites are listed in order
(1 to 58) of processing. The first four are simulated point
patterns used for the model development
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offer any advantages in the current context of con-
structing an FCS estimator of stem density. The key
to the relative success of the new proposed estimator
rests with the joint estimation of the distribution of
thej=1, ..., kdistances as a function of log(j) and in-
clusion of a random location effect (in density) called
a shared frailty. A random location effect cannot be
estimated from just the distances to the k" nearest
tree. Replications are needed, and here they are in
the form of all k distances. There are two disadvan-
tages: (i) the location effect is estimated for an en-
semble of ordered distances and not specifically for
the distance to the k™ nearest tree; and (ii) the esti-
mated parametric distribution function of distances
is conditional on the order (j) of the distance, hence
estimates of means and variances require a calibra-
tion to the distribution of the kth nearest trees.

Adopting a survival function modelling frame-
work for an FCS estimator of stem density offers
an analyst a wide spectrum of flexible survival
functions and options to exploit auxiliary vari-
ables (GUTIERREZ 2002; L1, RyaN 2002, 2004; BA-
NERJEE et al. 2003; W1ENKE 2010). It is known that
distinct spatial processes generate distinct dis-
tributions of distances to the nearest /' element
(I=1,..., k) (ILLIAN et al. 2008; OEDEKOVEN et al.
2014). For a first-order stationary spatial process
generating a point pattern, the ensuing point den-
sity is closely linked to the distribution of distanc-
es from a randomly selected location to its k near-
est neighbours. Identifying the link is a complex
challenge, unless the point process is compatible
with complete spatial randomness (THOMPSON
1956; IsHam 2010). In this study, a functional link
between the four parameters in the survival func-
tion, and the point density of a site was not appar-
ent. Therefore the benefit of a survival function
was limited to the estimation of the parameter in
the assumed gamma distribution of the shared
frailty viz. heterogeneity in local point density. A
benefit that made the performance of A run al-
most parallel to that of A4,,,. A consistent relative
performance against a benchmark is important
from a practical perspective. It allows an analyst
a better informed decision when pros and cons of
fixed area versus fixed count sampling are consid-
ered. A widely fluctuating performance of simpler
FSC estimators (MOORE 1954; MORISITA 1954,
1957; PERSSON 1964; EBERHARDT 1967; POLLARD
1971; Cox 1976; DELINCE 1986; KLEINN, VILCKO
2006b) is an important deterrent except in a few
cases when an analyst knows what to expect from
a chosen FSC estimator (LyNcH, Rusypr 1999;
KLEINN et al. 2009).
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The use of a survival function in an FCS estima-
tor of stem density may offer some additional tan-
gible advantages, including but not limited to: use
of density-dependent explanatory variables (NIEL-
SON et al. 2004); ease of handling censored distanc-
es along borders of a finite area population (LyNCH
2012); including conditional probabilities of obser-
vation (BARBOUR, GERRITSEN 1996; DOBERSTEIN
et al. 2000; FARNSWORTH et al. 2002).

The variance of the random and shared frailty ef-
fects (0) was statistically significant in all individual
estimates, suggesting either a significant over-dis-
persion in local point density (6 < 1) or a significant
under-dispersion (0 > 1) relative to that of ;c\he com-
plete random point pattern. As expected, 6 was re-
lated to the among-plot variance of /im. For the 58
sites, a second-degree polynomial with Ay (site) as
the dependent and log(B(site)) as the explanatory
variable achieved an R-squared value of 0.97 with
all polynomial terms highly significantly different
from 0 (7 > 15.7, P < 0.00). Larger values of 8 (site)
were indicative of a larger within-site variation in
local point density. Fig. 7 illustrates, for each site,
the distribution of estimated values of 6. Sites with
a quasi-regular point pattern are characterized by
low values of © with a mean in the interval [0.25;
0.5] and an interquartile range of approximately
0.2. Strongly clustered sites (e.g. 2, 8, 11, and 17)
display not only a large average value of 6, but
equally a large among-sample variation in esti-
mates of 6. Presumably 6 is also related to Ripley’s
K-function (ILLIAN et al. 2008) and could therefore
serve as quantitative indicator of the variance in lo-
cal density.

Using a survival function facilitated the construc-
tion of a bias-correction term (¢) intended to coun-
teract the effect of using the predicted area of the
smallest circle including, on average, the k nearest
elements at a randomly chosen sample location
(PoLLARD 1971; Cox 1976; DELINCE 1986; PICARD
et al. 2005; KLEINN, VILCKO 2006b). A risk-based
approach to constructing a bias-correction term
was adopted (CASELLA, BERGER 2002): The risk of
using the expected distance as the radius in an as-
sumed fixed area circular plot for the calculation
of an FCS density estimator was equated to the
likelihood that the distance is less than expected,
times the likelihood that it is greater. Attempts to
replace this risk-based correction term with the
more familiar 0.5 (KLEINN 1996) only resulted in
an increase in estimates of bias.

From a modelling perspective, this study suggests
that improvements in FCS estimators must come
from not only in modelling the distribution of dis-
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tances but also the within-site variance in local den-
sity. A direct modelling of the latter in the form of a
marginal distribution of density has met with mixed
results (MAGNUSSEN et al. 2008b; MAGNUSSEN
2012b). Estimating the distribution of frailty appears
more promising. A side-effect of estimating a model
for frailty and a model for distances is the increase in
the number of parameters to be estimated. This puts
upward pressure on the required minimum sample
size for obtaining results with an acceptable preci-
sion. Results from this study suggest a minimum
sample size of 12 for the proposed estimator.

The proposed FCS estimator of density appears to
hold a small but important advantage over existing
practical FCS alternatives, at least in terms of RMSE
and cCI95, which are important to both an analyst
as well as to users of FCS results. While the marginal
advantages across 58 point patterns may seem slim,
the correlation among results with 4,,, and A, was
considerably stronger than with the alternatives.

The reported performance of A has been quanti-
fied in terms of averages across sites. However, a
strong correlation among site-specific results with
Arx and Agsupports the expectation of stability in
relative performance. Nevertheless, the wide range
in performances of the four estimators across sites
is an area of concern. The poor performance of all
four estimators on a handful of sites — with either a
large amount of within-site variation in local point
density or a patchy mosaic of areas with distinct
differences in point density — reflects that a precise
and an accurate estimate of density from such sites
is only possible with large samples (e.g. n > 100).

The large variation in the 58 spatial point patterns
used in this study vouches for a robust assessment of
the proposed FCS estimator of density and allows a
generalization of the results to practice, not only in
forestry, but also to surveys in biology and ecology
where FCS can be attractive (DOBERSTEIN et al. 2000;
PicARrD et al. 2005; STEINKE, HENNENBERG 2006;
WHITE et al. 2008).
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