J. For. Sci., 2015, 61(10):439-447 | DOI: 10.17221/68/2015-JFS

Comparison of linear mixed effects model and generalized model of the tree height-diameter relationshipOriginal Paper

Z. Adamec
Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

Models of height curves generated using a linear mixed effects model and generalized model were compared. Both tested models were also compared with local models of height curves, which were fitted using a nonlinear regression. In the mixed model two versions of calibration were tested. The first calibration approach was based on measurement of heights only in trees of the mean diameter interval, while the second calibration approach was based on measurement of tree heights in three diameter intervals. Generalized model is the mathematical formulation of a system of uniform height curves, which is commonly used in the Czech Republic. The study took place at Training Forest Enterprise called Masaryk Forest at Křtiny and was carried out for Norway spruce (Picea abies [L.] Karst.). It was found that the mixed model behaves correctly only in the case of calibration based on selection of trees in three diameter intervals. Selection of a total of nine trees was confirmed as the most suitable to calibrate the model. In most of the calculated quality criteria, the mixed model achieved better results than the generalized model, even with a smaller number of measured heights. The bias of both models from the local model was very similar (0.54 m for the mixed model and 0.44 m for the generalized model). The mixed model can therefore fully replace the commonly used generalized model even with a smaller number of measured heights.

Keywords: height function; mean height; Michailoff function; Norway spruce; mean diameter; uniform height curve

Published: October 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Adamec Z. Comparison of linear mixed effects model and generalized model of the tree height-diameter relationship. J. For. Sci. 2015;61(10):439-447. doi: 10.17221/68/2015-JFS.
Download citation

References

  1. Adame P., Del Río M., Cañellas I. (2008): A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, 256: 88-98. Go to original source...
  2. Adamec Z., Drápela K. (2015): Generalized additive models as an alternative approach for the modelling of the tree height-diameter relationship. Journal of Forest Science, 61: 235-243. Go to original source...
  3. Akaike H. (1973): Information theory and an extension of the maximum likelihood principle. In: Petrov B.N., Csaki F. (eds): Proceedings of the 2nd International symposium on information theory, Budapest, Sept 2-8, 1973: 268-281.
  4. Calama R., Montero M. (2004): Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34: 150-163. Go to original source...
  5. Calama R., Montero G. (2005): Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach. Silva Fennica, 39: 37-54. Go to original source...
  6. Castedo-Dorado F., Barrio-Anta M., Parresol B.R., ÁlvarezGonzález J.G. (2005): A stochastic height-diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Annals of Forest Science, 62: 455-465. Go to original source...
  7. Crecente-Campo F., Tomé M., Soares P., Diéguez-Aranda U. (2010): A generalized nonlinear mixed-effects heightdiameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259: 943-952. Go to original source...
  8. Curtis R.O. (1967): Height-diameter and height-diameter-age equations for second-growth douglas-fir. Forest Science, 13: 365-375.
  9. Drápela K. (2011): Regresní modely a možnosti jejich využití v lesnictví. [Habilitation Thesis.] Brno, Mendel University in Brno: 235.
  10. Eerikäinen K. (2003): Predicting the height-diameter pattern of planted Pinus kesiya stands in Zambia and Zimbabwe. Forest Ecology and Management, 175: 355-366. Go to original source...
  11. Fabrika M., Pretzsch H. (2013): Forest Ecosystem Analysis and Modelling. Zvolen, Technická univerzita vo Zvolene: 620.
  12. Fang Z., Bailey R.L. (1998): Height-diameter models for tropical forest on Hainan Islands in Southern China. Forest Ecology and Management, 110: 315-327. Go to original source...
  13. Halaj J. (1955): Tabuľ ky na určovanie hmoty a prírastku porastov. Bratislava, SVPL: 328.
  14. Huang S., Price D., Titus S.J. (2000): Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 129: 125-141. Go to original source...
  15. Huang S., Titus S.J., Wiens D.D. (1992): Comparison of nonlinear mixed height-diameter function for major Alberta tree species. Canadian Journal of Forest Research, 22: 1297-1304. Go to original source...
  16. Husch B., Beers T.W., Kershaw J. A. (2003): Forest Mensuration. 4th Ed. Hoboken, New Jersey, John Wiley & Sons: 443.
  17. Kangas A., Haara A. (2012): Comparison of nonspatial and spatial approaches with parametric and nonparametric methods in prediction of tree height. European Journal of Forest Research, 131: 1771-1782. Go to original source...
  18. Lu J., Zhang L. (2013): Evaluation of structure specification in linear mixed models for modeling the spatial effects in tree height-diameter relationships. Annals of Forest Research, 56: 137-148.
  19. Martin F., Flewelling J. (1998): Evaluation of tree height prediction models for stand inventory. Western Journal of Applied Forestry, 13: 109-119. Go to original source...
  20. Mehtätalo L. (2004): A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research, 34: 131-140. Go to original source...
  21. Michailoff I. (1943): Zahlenmäßiges Verfahren für die Ausführung der Bestandeshöhenkurven. Forstwissenschaftliches Centralblatt und Tharandter Forstliches Jahrbuch, 6: 273-279.
  22. Özçelik R., Diamantopoulou M.J., Crecente-Campo F., Eler U. (2013): Estimating Crimerian juniper tree height using nonlinear regression and artificial neural network models. Forest Ecology and Management, 306: 52-60. Go to original source...
  23. Petterson H. (1955): Barrskogens volymproduktion. Meddelanden från Statens skogsforskningsinstitut, 45: 1-391.
  24. Prodan M. (1951): Messung der Waldbestände. Frankfurt a. M., J.D. Sauerländer's Verlag: 260.
  25. R Development Core Team (2015): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/ (accessed March 1, 2015).
  26. Robinson G.K. (1991): That BLUP is a good thing: The estimation of random effects. Statistical Science, 6: 15-32. Go to original source...
  27. Schmidt M., Kiviste A., von Gadow K. (2011): A spatially explicit height-diameter model for Scots pine in Estonia. European Journal of Forest Research, 130: 303-315. Go to original source...
  28. Schröder J., Álvarez-Gonzáles J.G. (2001): Comparing the performance of generalized diameter-height equations for maritime pine in Northwestern Spain. Forstwissenschaftliches Centralblatt, 120: 18-23. Go to original source...
  29. Sharma M., Parton J. (2007): Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249: 187-198. Go to original source...
  30. Sharma M., Zhang S.Y. (2004): Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19: 442-451. Go to original source...
  31. Soares P., Tomé M. (2002): Height-diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management, 166: 99-109. Go to original source...
  32. Šmelko Š. (2007): Dendrometria. Zvolen, Technická univerzita vo Zvolene: 400.
  33. Šmelko Š., Pánek F., Zanvit B. (1987): Matematická formulácia systému jednotných výškových kriviek rovnovekých porastov SSR. Acta Facultatis Forestalis Zvolen, 19: 151-174.
  34. Temesgen H., von Gadow K. (2004): Generalized heightdiameter models - an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123: 45-51. Go to original source...
  35. Temesgen H., Zhang C.H., Zhao X.H. (2014): Modelling tree height-diameter relationships in multi-species and multilayered forests: A large observational study from Northeast China. Forest Ecology and Management, 316: 78-89. Go to original source...
  36. Trincado G., VanderSchaaf C.L., Burkhart H.E. (2007): Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 126: 253-262. Go to original source...
  37. Van Laar A., Akça A. (2007): Forest Mensuration. Managing Forest Ecosystems. Volume 13. Dordrecht, Springer: 383. Go to original source...
  38. Vargas-Larreta B., Castedo-Dorado F., Alvarez-Gonzalez F.J., Barrio-Anta M., Cruz-Cobos F. (2009): A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). Forestry, 82: 445-462. Go to original source...
  39. Vonesh E.F., Chiinchilli V.M. (1997): Linear and nonlinear models for the analysis of repeated measurements. Boca Raton, Chapman & Hall/CRC: 560. Go to original source...
  40. Wolf J. (1978): Systém standardizovaných výškových křivek stejnověkých smrkových porostů. Acta Universtitatis Agriculturae Brno. Series C, Facultas silviculturae, 47: 93-102.
  41. Yang Y., Huang S. (2011): Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Canadian Journal of Forest Research, 41: 1671-1686. Go to original source...
  42. Zhang L. (1997): Cross-validation of non-linear growth function for modelling tree height-diameter relationships. Annals of Botany, 79: 251-257. Go to original source...
  43. Zhang L., Bi H., Cheng P., Davis C.J. (2004): Modeling spatial variation in tree diameter-height relationships. Forest Ecology and Management, 189: 317-329. Go to original source...
  44. Zhang L., Ma Z., Guo L. (2008): Spatially assessing model errors of four regression techniques for three types of forest stands. Forestry, 81: 209-225. Go to original source...
  45. Zhao L., Chunming L., Tang S. (2013): Individual-tree diameter growth model for fir plantations based on multi-level linear mixed effects models across southeast China. Journal of Forest Research, 18: 305-315. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.