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ABSTRACT: Models of height curves generated using a linear mixed effects model and generalized model were com-
pared. Both tested models were also compared with local models of height curves, which were fitted using a nonlinear 
regression. In the mixed model two versions of calibration were tested. The first calibration approach was based on 
measurement of heights only in trees of the mean diameter interval, while the second calibration approach was based 
on measurement of tree heights in three diameter intervals. Generalized model is the mathematical formulation of 
a system of uniform height curves, which is commonly used in the Czech Republic. The study took place at Training 
Forest Enterprise called Masaryk Forest at Křtiny and was carried out for Norway spruce (Picea abies [L.] Karst.). It 
was found that the mixed model behaves correctly only in the case of calibration based on selection of trees in three 
diameter intervals. Selection of a total of nine trees was confirmed as the most suitable to calibrate the model. In most 
of the calculated quality criteria, the mixed model achieved better results than the generalized model, even with a 
smaller number of measured heights. The bias of both models from the local model was very similar (0.54 m for the 
mixed model and 0.44 m for the generalized model). The mixed model can therefore fully replace the commonly used 
generalized model even with a smaller number of measured heights.
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The height of a tree can be considered one of the 
most important variables in the forest inventory 
and modelling of its current state or future devel-
opment. Height measurement, however, is expen-
sive and time-consuming (Adame et al. 2008). This 
duration can be reduced due to the use of distance-
measuring ultrasonic technology (Vargas-Larre-
ta et al. 2009), but is still higher than when measur-
ing the diameter at breast height of a tree. Therefore 
the measured heights began to be replaced by fit-
ted heights. These heights are fitted by the height 
curve model, which is based on a relationship be-
tween the diameter at breast height of a tree and 
its height (height-diameter relationship) (Huang 
et al. 1992; Martin, Flewelling 1998). This re-
lationship is also referred to as the height function. 
This function can be written using a wide range of 
relationships from linearized equation (e.g. Zhang 
et al. 2004), adjusted growth functions (e.g. Zhang 

1997) or allometric equations (e.g. Trincado et 
al. 2007) to functions specially constructed for this 
purpose (e.g. Petterson 1955), which are the most 
frequent. Their broad overview can be found e.g. 
in Fang and Bailey (1998), Huang et al. (2000), 
Husch et al. (2003), Van Laar and Akça (2007) 
and Fabrika and Pretzsch (2013). Besides the 
traditional parametric methods, also nonparamet-
ric models can be used. Examples of these methods 
can be found in Zhang et al. (2008), Schmidt et 
al. (2011), Kangas and Haara (2012) and Ada-
mec and Drápela (2015). 

The height curve model is fitted mostly at a local 
level ‒ the level of forest stand. But even this mod-
el requires measuring a large number of heights. 
Van Laar and Akça (2007) recommend 20 to 25 
heights. Drápela (2011) recommends even 3 to 5 
heights for each diameter class. Additionally, the 
problem in this type of model is that any particu-
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lar model is valid within that stand only at a given 
moment (Curtis 1967). Height curve changes its 
shape with the forest stand age (Prodan 1951). 
The problem of curve changes at various stages 
of stand development can be solved by replacing 
a specific height curve at a given time with a sys-
tem of uniform height curves. It is a comprehensive 
system of schematized curves that model the ex-
pected pattern of height curves of individual spe-
cies in a given population thus enabling to choose 
just one curve for a specific forest stand and sub-
stitute it for the actual curve of a species in the 
given forest stand (Šmelko 2007). It is therefore a 
set of curves that correspond to particular stages 
of development of the even-aged stand. The stage 
of stand development is defined by its mean diam-
eter (Fabrika, Pretzsch 2013) and often also by 
its mean height. Generally, the inclusion of stand 
variables in the height curve model reduces the 
mean of residuals and increases the model’s ac-
curacy (Calama, Montero 2004). Mathematical 
formulation of a system of uniform height curves is 
the model known as the generalized height-diam-
eter  (h-d) model (GM). In this type of model the 
mean diameter of a stand is determined, and only 
for trees within the defined interval of mean diam-
eter several heights are measured which provide 
the mean height. To determine the fitted heights, 
you then need only diameters at breast height of 
individual trees, but no additional heights are mea-
sured. The number of measured heights necessary 
for determining the mean height is lower than the 
total number of measured heights with the lo-
cal model of height curve. The above statement is 
the main reason why generalized models are often 
used instead of local models. Generalized models 
were dealt with e.g. by Wolf (1978), Sharma and 
Zhang (2004), Castedo-Dorado et al. (2005), 
Sharma and Parton (2007) and Vargas-Larre-
ta et al. (2009). 

The linear mixed effects (LME) model of height 
curve uses two components – the fixed and the 
random part. The fixed component explains the 
impact of different variables as with the ordinary 
least squares regression (Yang, Huang 2011). 
The random component explains the heterogene-
ity and randomness given by both known and un-
known factors (Vonesh, Chiinchilli 1997). The 
fixed component thus applies to the entire data set 
(e.g. the whole population or ecoregion) and the 
random component refers to the various hierarchi-
cal levels of the set (e.g. forest stand) (Adame et 
al. 2008). The result is the same as with the gener-
alized model, one general model that will be very 

well applicable to the study area. For this model 
to be applicable even outside the forest stands 
that were used to construct it, the calibration is 
required. Calibration can be either conditional or 
unconditional (Calama, Montero 2004). Con-
ditional calibration is used more often because it 
estimates random components of parameters for 
each individual forest stand. To this end, at least 
one value of the dependent variable must be mea-
sured in the given stand. As with the generalized 
model, it is necessary to measure several heights 
also in the calibrated mixed model in order to cre-
ate the height curve model to the stand level. The 
reason why the LME model could replace the gen-
eralized model is that for its proper use it should 
be sufficient to measure significantly fewer heights. 
Models of height curves built up from the LME 
model were dealt with e.g. by Eerikäinen (2003), 
Mehtätalo (2004), Trincado et al. (2007), 
Schmidt et al. (2011), Kangas and Haara (2012) 
and Lu and Zhang (2013). 

The aim of the study is to compare the linear 
mixed effects model and generalized model for 
modelling tree heights at the stand level and check 
whether the LME model could replace the gen-
eralized model. Both models will be compared in 
terms of goodness of fit of the resulting model. The 
number of measured heights of trees in the mixed 
model, which is needed for model calibration, will 
be also compared with the number of heights nec-
essary to determine the mean height of the forest 
stand for the generalized model.

MATERIAL AND METHODS

The models were built up for Norway spruce (Pi-
cea abies [L.] Karst.) being the main commercial 
tree species in the Czech Republic. Data material 
was used that was measured in 2011 as a basis for 
analysing the Norway spruce height curves in the 
territory of the Training Forest Enterprise called 
Masaryk Forest at Křtiny. Measurements were done 
on 46 circular sample plots in 23 forest stands. Two 
sample plots were placed in each forest stand in or-
der to better describe the variability of forest stand 
and create a larger data set at the stand level. The 
size of sample plots varied depending on the age 
of the stand ranging from 250 m2 in the youngest 
stands (under 40 years of age) to 1,200 m2 in mature 
stands (over 81 years of age). A total of 1,590 trees 
were measured in the forest stands aged from 30 to 
136 years. The diameter at breast height of a tree to 
the nearest 1 cm and height of a tree to the nearest 
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0.1 m were measured. At the stand level, the mean 
diameter dg and the mean height hg were calculat-
ed. Mean diameter was calculated as the quadratic 
mean of tree diameters (Fabrika, Pretzsch 2013) 
(Eq. 1):

�� � �∑ ����������
�     	  (1)

where:
dg  – mean diameter,
n  – sample size, 
d1.3i

  – diameter at breast height of a tree i.

Mean height was calculated for a tree with mean 
diameter dg from local models of height curves 
built up for individual stands. For modelling the 
height curve at the local level, the two-parameter 
Michailoff height curve was chosen (Michailoff 
1943) (Eq. 2):

 	  (2)

where: 
 	 – fitted height of a tree i, 
a, b 	– parameters of the model, 
d1.3i

 	– diameter at breast height of a tree i.

The model developed by Šmelko et al. (1987) was 
chosen for the generalized height-diameter model. 
This model is a mathematical formulation of a sys-
tem of uniform height curves generated by Ha-
laj (1955), which is commonly used in the Czech 
Republic in forest inventory. This model includes 
mean diameter dg and mean height hg as the stand 
variables. The model can be described using the 
equation below (Eq. 3): 

   	  (3)

where: 
  – fitted height of a tree i, 
dg  – mean diameter, 
hg  – mean height, 
d1.3i

  – diameter at breast height of a tree i,
a0–a2  – parameters of the model. 

For Norway spruce the values of model param-
eters are: a0 = –7.3640254, a1 = 0.16909118 and  
a2 = –0.35217965.

The generalized height-diameter model by Šmelko 
et al. (1987) is also based on the Michailoff function. 
The Michailoff height function was chosen for model-
ling at a local (stand) level as well as for the construc-
tion of mixed model. All three models (local, general-
ized and mixed model) used the same height function 
and it was possible to compare each other.

The LME model was built up as a two-level mod-
el. The first level contains only the tree variables 

(height of a tree and diameter at breast height of 
a tree). The second level already includes stand 
variables. As a stand variable, the mean diameter 
dg was chosen. The reason for using this variable 
was that the estimates of the first level parameters 
showed a strong statistically significant relation-
ship with just that variable. This relationship has 
a  nonlinear shape for parameter a, so the loga-
rithm of the mean diameter was used as a stand 
variable. The choice of mean diameter as a stand 
variable was also supported by the fact that it was 
easily identifiable in the stand and it was also con-
tained in the generalized height-diameter model by 
Šmelko et al. (1987). The LME model of the Mi-
chailoff height curve using the stand variable can 
be thus described by the following Equations (4–8): 

 	  (4)

  	  (5)

 	  (6)
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where: 
  – fitted height of a tree i, 
a, b  – parameters of the model, 
uai

, ubi
  – random effects of model parameters,

d1.3i
  – diameter at breast height of a tree i, 

  – residual value of a tree i at sample plot k,
a0– b1 – fixed effects of model parameters, 
dg  – mean diameter, 
τa 	 – standard deviation of random effects of the 

intercept of the model, 
τb 	 – standard deviation of random effects of the 

regression parameter of the model, 
τab  – covariance of random effects, 
σ  – standard deviation of residuals.

In order to use the LME model also for forest 
stands other than those for which it was construct-
ed, it is necessary to calibrate the model. In this 
case the conditional calibration was used, which 
requires measuring at least one value of the depen-
dent variable in a given stand. This is performed to 
calculate the random parts of the model param-
eters for a particular forest stand using the tech-
nique of best linear unbiased predictor (BLUP) by 
Robinson (1991). 

According to Calama and Montero (2005) the es-
timate of random parts of the parameters can be per-
formed according to the following equation (Eq. 9):

×
× × ×
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where: 
	  – vector of BLUP for the random components, 
	  – covariance matrix of the random effects, 
	  – design matrix for the random components, 
	  – estimated matrix for the residual variance, 
	  – vector whose values are the residuals of the mar-

ginal unconditional calibration and whose dimen-
sion is the number of observations.

Two variants of tree selection for the conditional 
calibration were tested. In the first variant only trees 
that were in the range of mean diameter < dg ± 2 cm 
> were selected. Under this option, the calibration 
upon measurement of 1 to 5 trees was carried out. 
This option was chosen because it is similar to the 
selection of trees for determining the mean height 
hg in the generalized height-diameter model. In this 
model, Šmelko et al. (1987) chose trees for height 
measurement to determine the mean height hg also 
only with the diameter at breast height in the range 
of mean diameter dg. In the second variant, trees 
in three diameter intervals were selected: < dmin; 
dmin + 4 cm >, < dg ± 2 cm > and < dmax – 4 cm;  
dmax >. In each diameter interval 1, 2 or 3 trees were 
measured, so in this variant a total of 3 to 9 trees 
were measured. For both variants, the trees within 
diameter intervals by using 10 simulations were 
randomly selected. The calibration of mixed model 
was carried out in eight stands. In these stands the 
resulting calibrated LME models were also com-
pared with the local model calculated by nonlinear 
regression and also with the generalized model by 
Šmelko et al. (1987). The main criterion for selec-
tion of these stands was a different age to allow for 
comparisons of the models used in different stages 
of stand development. Basic data of the stands are 
listed in Table 1.

The comparison of the models was performed by 
using of the following criteria:
– coefficient of determination (R2) (Eq. 10),

 	  (10)

– root mean square error (RMSE) (Eq. 11),

 	  (11)

– Akaike information criterion (AIC) (Akaike 1973) 
(Eq. 12),

	  (12)

mean of deviations of fitted values obtained from 
the LME or GM and fitted values obtained from the 
local model fitted by nonlinear regression (NLR) 
(Δi) (Eq. 13),

 	  (13)

where: 
yi 	 – measured value of a tree i (i = 1, 2, 3, …, n),
 	 – fitted value of a tree i (i = 1, 2, 3, …, n),
 	 – mean value of all measured trees i (i = 1, 2, 3, …, n),
ei 	 – residual value, 
n 	 – sample size,
m 	 – number of model parameters,
 	 – fitted value of a tree i (i = 1, 2, 3, …, n) from LME 

or generalized model, 
 	 – fitted value of a tree i (i = 1, 2, 3, …, n) from NLR 

local model.
All analyses and models were conducted in the R 

software environment (R Development Core Team 
2015). The results are shown with significance level 
of α = 0.05, thus with 95% confidence.

RESULTS

The resulting linear mixed effects model has two 
levels. Estimates of parameters of the model, cova-
riance matrix and standard deviation of residuals 
are shown in Table 2. 

Two different ways of selecting trees for conditional 
calibration were tested. The quality of the calibrated 
model was evaluated according to the criteria above. 
These criteria were calculated for all 10 simulations in 
the LME model and also for the generalized and local 
models. In the LME model average values for all the 
criteria from all simulations were calculated. For the 
mean of deviations of fitted values obtained from the 
LME model and fitted values obtained from the NLR 
model, the 95% confidence intervals of mean values 
were also calculated. The resulting values of the crite-
ria are given in Table 3.  

Results in Table 3 are given only for that variant 
of calibration when the trees in three diameter in-
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 – fitted value of a tree i (i = 1, 2, 3, …, n),

 – mean value of all measured trees i (i = 1, 2, 3, …, n),

 

 – fitted value of a tree i (i = 1, 2, 3, …, n) from LME or generalized model,  

 – fitted value of a tree i (i = 1, 2, 3, …, n) from NLR local model  – fitted value of a tree i (i = 1, 2, 3, …, n) from LME or generalized model,  

 – fitted value of a tree i (i = 1, 2, 3, …, n) from NLR local model 

Table 1. Basic characteristics of selected forest stands

Forest 
stand

Age  
(yr)

dg  
(cm)

hg  
(m)

N/ha  
(ind)

BA/ha  
(m2)

1 30 20.1 17.86 1,240 39.2
4 39 21.5 21.43 1,080 39.3
8 59 26.6 25.53 521 29.0
11 73 27.2 27.60 557 32.4
14 93 40.0 32.82 279 35.0
16 109 47.4 36.50 263 46.3
19 119 39.8 33.36 371 46.1
22 133 41.4 34.14 233 31.4

dg – mean diameter, hg – mean height, N/ha – number of trees 
per hectare, BA/ha – stand basal area per hectare
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tervals were selected, as the second method of cali-
bration (only trees in the interval around the mean 
diameter) was proved unsatisfactory. The reason 
was that in this case the calibration very often failed 
because the resulting model had too high values of 
compared criteria (in the coefficient of determina-
tion too small) and the actual model did not meet 
the conditions required for the correct behaviour 
of the height function. The most frequent problem 
was that the fitted heights decreased with increas-
ing diameter at breast height. This problem oc-
curred in the variant with all numbers of selected 
trees (1 to 5), so that even the larger sample size did 
not eliminate this problem. Conversely, calibration 
with trees in three diameter intervals worked prop-
erly at all times.

The results in Table 3 show that the LME model, 
which uses calibration data measured on trees in 
three diameter intervals, is reasonable. With the in-
creasing number of measured trees, the goodness 

of fit of the model grows as well. If a comparison is 
made of results obtained using the LME model and 
results of the generalized model, it is evident that the 
LME model with three measured trees provides sig-
nificantly worse results. The mean of deviations of 
the fitted values is on average (indifferently for forest 
stands) more than double than that of the general-
ized model. Conversely, when comparing the LME 
model with nine measured trees and the generalized 
model, better results for R2, RMSE, and AIC were 
achieved in the LME model. The mean of deviations 
of the fitted values for the LME model is still higher 
than that of the generalized model, but only by 10 cm 
on average. In four stands the LME model achieved 
even better results than the generalized model. In 
the light of the results obtained, it can be concluded 
that the LME model with nine trees measured for 
the calibration purposes achieves similar results like 
the generalized model and can therefore be used in 
place of it. If both types of tested models (the LME 

Table 3. Criteria of evaluated models 

TC Model
Forest stand

1 4 8 11 14 16 19 22 Mean value

Δi

3T 0.538 0.608 0.937 1.161 0.805 1.497 0.691 1.307 0.943 (± 0.250)
6T 0.422 0.420 0.728 0.685 0.781 0.866 0.580 1.093 0.697 (± 0.163)
9T 0.442 0.359 0.585 0.648 0.670 0.789 0.290 0.508 0.536 (± 0.121)

GM 0.336 0.549 0.646 0.087 0.915 0.395 0.416 0.155 0.437 (± 0.192)

R2

3T 0.507 0.566 0.555 0.731 0.238 0.327 0.536 0.386 0.481
6T 0.594 0.660 0.640 0.816 0.255 0.488 0.571 0.435 0.558
9T 0.590 0.683 0.683 0.822 0.296 0.503 0.624 0.507 0.589

GM 0.590 0.683 0.650 0.862 0.210 0.550 0.602 0.534 0.585
LM 0.664 0.737 0.751 0.864 0.366 0.583 0.644 0.531 0.642

RMSE

3T 1.353 1.300 1.818 1.897 2.322 3.110 1.783 3.195 2.097
6T 1.244 1.154 1.651 1.599 2.270 2.735 1.724 3.070 1.931
9T 1.249 1.122 1.557 1.574 2.207 2.700 1.616 2.873 1.862

GM 1.284 1.301 1.654 1.400 2.359 2.626 1.671 2.822 1.890
LM 1.135 1.022 1.386 1.381 2.097 2.505 1.573 2.805 1.738

AIC

3T 37.7 29.2 86.9 109.6 114.5 146.5 103.8 131.6 95.0
6T 28.8 16.7 74.1 73.9 111.7 129.8 98.7 127.3 82.6
9T 29.2 14.2 66.2 73.1 107.9 128.5 87.3 120.1 78.3

GM 33.9 31.3 76.4 55.5 117.9 124.6 94.4 119.1 81.6
LM 17.7 4.3 49.6 52.4 101.2 117.7 82.6 117.5 67.9

TC – type of criterion, Δi – mean of deviations of fitted values obtained from the LME or generalized model and fitted 
values obtained from the NLR local model (values in brackets are confidence intervals of the mean), R2 – coefficient of de-
termination, RMSE – root mean square error, AIC – Akaike information criterion, 3T – calibrated LME model based on 3 
measured trees, 6T – calibrated LME model based on 6 measured trees, 9T – calibrated LME model based on 9 measured 
trees, GM – generalized model, LM – local model

Table 2. Results of the linear mixed effects 2nd level model

a0 a1 b0 b1 τa
2 τb

2 τab σ2

1.2587* (0.18139) 0.6891* (0.05195) –5.3048* (1.29638) –0.1863* (0.04008) 0.0035 1.6595 –0,0012 0.0041

in brackets – standard errors of estimates, *significant at P < 0.001



444 J. FOR. SCI., 61, 2015 (10): 439–447

and generalized model) were compared with the 
local model, it was found that there are differences 
between models, but in practical terms these differ-
ences are acceptable. Both compared types of mod-
els can thus be used instead of the local model of the 
height curve. In the LME model, the above applies 
only when more trees are used for calibration (6 to 9).  
The quality of both compared models against the lo-
cal model can be well seen in Fig. 1a, which shows 
all the constructed models by the example of forest 
stand no. 22. 

In the mixed model it is also better to use cali-
bration based on a greater number of trees on the 
grounds that it better describes the variability of 
heights in individual diameter intervals. This leads 
to stabilization of the height curve position. For cali-
bration based on smaller samples the curve position 
is more influenced by even one biased value. This 
means that if dominant, or conversely, suppressed 
tree is selected for calibration, the curve position is 
biased towards this individual. Stabilization of the 
position of the resulting curve, and its resistance to 
outliers causing bias are seen in Fig. 1b, which shows 
the influence of the number of measured trees by 
the example of forest stand no. 22. The position of 
the curve constructed by the LME model, which 
was calibrated on the basis of three measured trees, 
is significantly biased when compared with the lo-
cal model. That is because two dominant trees were 
measured (one with small diameter and one with 
large diameter). The position of the height curve 
constructed by the LME model calibrated through 
measurement of nine trees is no longer biased, al-
though the same two trees were also selected. 

DISCUSSION

Within the LME model, two types of tree selec-
tion for conditional calibration were tested. A mod-
el, which is based on selection of trees only in the 
interval of mean diameter, proved unsuitable be-
cause it had poor values of the monitored criteria 
or was not biologically justified. Crecente-Campo 
et al. (2010) also tested the conditional calibration 
with selection of trees within the mean diameter. 
The difference was only in the fact that they used 
the nonlinear mixed effects modelling approach to 
construct the height curve. Their sample size for 
calibration was 1 to 10 trees. Nor did they describe 
this method of selection as suitable, because models 
constructed using this method for calibrating had 
a very high mean of residuals and standard errors. 
Also Özcelik et al. (2013) confirmed in their work 
the high mean of residuals at the same calibration 
method. But it is arguable that the mean of residuals, 
standard error of residuals as well as the root mean 
square error decrease when a larger sample size is 
used for calibration, regardless of the method of 
selection (Trincado et al. 2007; Kangas, Haara 
2012). This hypothesis was confirmed in this study 
only partially, and only in the case of selection made 
from three diameter intervals. 

Very good results were achieved in the model 
where the tree selection was made in three diame-
ter intervals. While the variant with a single tree in 
each diameter interval displayed high values of the 
mean of deviations of fitted values obtained from 
the LME model and fitted values obtained from 
the NLR local model, they decreased when a larger 

Fig. 1. Forest stand No. 22: (a) comparison of LME (sampled trees from three diameter intervals), generalized and local 
model; (b) influence of sample size of trees for conditional calibration of LME model

(a)                                   (b)

d1.3 (cm) d1.3 (cm)

h 
(m

)
Simulation 6 Simulation 9
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sample size of trees was chosen within the inter-
vals. When selecting three trees in each interval, 
in the half of the forest stands this mean of devia-
tions was even less than in the generalized model. 
For other monitored criteria better results were 
achieved with the LME model than with the gen-
eralized model in all forest stands. In their work, 
Crecente-Campo et al. (2010) and Özcelik et al. 
(2013) used the same methodology for the selection 
of trees (3, 6 or 9 in three diameter intervals). Both 
of these studies arrived at the same conclusion that 
when trees are selected from more diameter inter-
vals, the quality of the model is significantly better. 

For the generalized model we have determined 
the mean height hg as a function of dg with using the 
local model. According to Šmelko (2007) it is one 
of the standard ways of hg determination. Another 
standard way is a procedure where a certain num-
ber of trees with diameter <dg ± 2 cm> is found, 
their heights are measured and arithmetic mean is 
calculated. This is also taken as the mean height hg 
of the stand. The latter way was not used because 
there was not a sufficient number of trees with di-
ameter <dg ± 2 cm> on sample plots. For first way 
of hg determination, Van Laar and Akca (2007) 
recommended 20 to 25 height measurements. For 
the second way of hg determination, Halaj (1955) 
recommended to measure 9 to 22 heights for the 
whole stand depending on its size and to divide 
this number in direct proportion to the species 
composition. Šmelko (2007) proposes determin-
ing this number according to the stand height vari-
ability and raising it by several heights compared to 
Halaj (1955) in order to achieve higher accuracy. 
Šmelko (2007) indicates that if the mean height 
hg is determined by measuring 10 to 25 heights in 
<dg ± 2 cm>, it is possible to determine the mean 
height with the standard error of ± 2%. It is there-
fore apparent that in using the generalized model, 
we need to measure more heights than in the case 
of the calibrated LME model. For this reason, the 
LME model can be classified as an effective meth-
od in terms of the time required for measurements 
(Crecente-Campo et al. 2010; Zhao et al. 2013).

As a generalized model, the model constructed 
by Šmelko et al. (1987) was chosen. Alternatively, 
the generalized model by Wolf (1978) can be used. 
This model is also based on the Michailoff function 
using mean diameter and mean height. Its perfor-
mance is practically identical to the actual model 
used. Its disadvantage is that it has set the param-
eters for spruce only. 

The results have shown that according to most 
criteria the LME model provides better results 

than the generalized model. The same results were 
obtained e.g. by Sharma and Parton (2007), who 
compared the generalized model and nonlinear 
mixed effects (NLME) model for more boreal tree 
species in Ontario as well as Vargas-Larreta et 
al. (2009), who compared the NLME model and 
generalized model for different tree species in Du-
rango, Mexico.

Our generalized model used mean diameter and 
mean height as stand variables. Both variables are 
often used because they describe the stage of stand 
development. For example, Wolf (1978) used the 
same stand variables in his generalized model and 
achieved very similar results in terms of quality 
of the resulting model. The same variables were 
used also by Adame et al. (2008), who in addition 
to these two stand variables tested also dominant 
height and dominant diameter, stand basal area 
per hectare and number of trees per hectare. Their 
model was best when they used stand basal area 
and dominant height. Good results using the gen-
eralized model were also obtained by Schröder 
and Álvarez-Gonzáles (2001), who used mean 
diameter, Soares and Tomé (2002), who used 
dominant height and Temesgen and von Gadow 
(2004) or Temesgen et al. (2014), who used the 
stand variables like stand basal area per hectare, 
number of trees per hectare and stand basal area of 
larger trees per hectare. 

CONCLUSIONS

The linear mixed effects model can be used as 
an alternative for modelling the height curve in-
stead of the generalized model. But in order to use 
the LME model also in the stands on which it was 
not constructed, its calibration is required. Well-
functioning calibration turned out to be that which 
selects trees for calibration measurements in three 
diameter intervals. Three trees should be measured 
in each interval (total of nine) to achieve the practi-
cally acceptable goodness of fit of the LME model. 
During this calibration we achieved the mean of 
deviations of fitted values obtained from the LME 
model and fitted values obtained from the local 
NLR model of approximately 50 cm. This deviation 
is not too big and is acceptable from a practical 
point of view, so the LME model can also be used 
in place of the local model. Conversely, the calibra-
tion based on the measurement of trees only in the 
interval of mean diameter proved inoperable. The 
models resulting from this calibration method of-
ten failed to meet basic requirements for the height 
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curve (e.g. the continually increasing function). 
The advantage of the calibrated LME model against 
the generalized model is that the model of the 
same quality is achieved when measuring a smaller 
number of heights. In this case, we have measured 
maximally 9 heights in the LME model. In the 
generalized model, it is recommended that 10 to  
25 heights are measured. This number is directly 
and proportionally dependent on the variability of 
heights within the forest stand. The LME model 
is thus able to achieve the same (or better) results 
than the generalized model, but at a lower intensity 
of measurements in terms of both time and money. 
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