J. For. Sci., 2015, 61(6):235-243 | DOI: 10.17221/14/2015-JFS

Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationshipOriginal Paper

Z. Adamec, K. Drápela
Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

Generalized additive models were tested using three types of smoothing functions as an alternative for modelling the height curve. The models were produced for 23 forest stands of Norway spruce (Picea abies [L.] Karst.) in the territory of the Training Forest Enterprise Masaryk Forest Křtiny. The results show that the best evaluated and recommended for practical use at the level of forest stand was the LOESS function (locally weighted scatterplot smooting) when using a greater width of the bandwidth. Due to the frequent overfitting and the associated unrealistic behaviour of the function, smoothing by spline functions cannot be recommended for modelling the height curve at the level of forest stand. It was validated that the resulting model must be assessed not only according to the calculated quality criteria, but also depending on the graphic pattern of the model which must ensure that the height curve pattern is realistic. The quality of the resulting models (with LOESS function) was assessed to be high, mainly due to the very precise determination of model heights.

Keywords: loess; nonparametric method; Norway spruce; Petterson function; smoothing function; spline

Published: June 30, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Adamec Z, Drápela K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship. J. For. Sci. 2015;61(6):235-243. doi: 10.17221/14/2015-JFS.
Download citation

References

  1. Adame P., Del Río M., Cañellas I. (2008): A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, 256: 88-98. Go to original source...
  2. Aertsen W., Kint V., Muys B., Van Orshoven J. (2012): Effects of scale and scaling in predictive modelling of forest site productivity. Environmental Modelling & Software, 31: 19-27. Go to original source...
  3. Akaike H. (1973): Information theory and an extension of the maximum likelihood principle. In: Petrov B.N., Csaki F. (eds): Proceedings 2nd International Symposium on Information Theory, Budapest, Sept 2-8, 1973: 268-281.
  4. Albert M., Schmidt M. (2010): Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.). Forest Ecology and Management, 259: 739-749. Go to original source...
  5. Arabatzis A.A., Burkhart H.E. (1992): An evaluation of sampling methods and model forms for estimating heightdiameter relationships in loblolly pine plantations. Forest Science, 38: 192-198. Go to original source...
  6. Austin M.P. (2002): Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157: 101-118. Go to original source...
  7. Byun J.G., Lee W.K., Kim M., Kwak D.A., Kwak H., Park T., Byun W.H., Son Y., Choi J. K., Lee Y.J., Saborowski J., Chung D.J., Jung J.H. (2013): Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. Journal of Plant Ecology, 6: 380-392. Go to original source...
  8. Castaño-Santamaría J., Crecente-Campo F., FernándezMartínez J.L., Barrio-Anta M., Obeso J.R. (2013): Tree height prediction approaches for uneven-aged beech forests in northwestern Spain. Forest Ecology and Management, 307: 63-73. Go to original source...
  9. Curtis R.O. (1967): Height-diameter and height-diameterage equations for second-growth douglas-fir. Forest Science, 13: 365-375.
  10. Dobson A.J. (2002): Introduction to Generalized Linear Models. Boca Raton, Chapman & Hall/CRC Press: 221. Go to original source...
  11. Drápela K. (2011): Regresní modely a možnosti jejich využití v lesnictví. [Habilitation Thesis.] Brno, Mendel University in Brno: 235.
  12. Falk W., Mellert K.H. (2011): Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. Journal of Vegetation Science, 22: 621-634. Go to original source...
  13. Fang Z., Bailey R.L. (1998): Height-diameter models for tropical forest on Hainan islands in Southern China. Forest Ecology and Management, 110: 315-327. Go to original source...
  14. Frescino T.S., Edwards T.C., Moisen G.G. (2001): Modeling spatially explicit forest structural attributes using generalized additive models. Journal of Vegetation Science, 12: 15-26. Go to original source...
  15. Huang S., Price D., Titus S.J. (2000): Development of ecoregionbased height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 129: 125-141. Go to original source...
  16. Huang S., Titus S.J., Wiens D.D. (1992): Comparison of nonlinear mixed height-diameter function for major Alberta tree species. Canadian Journal of Forest Research, 22: 1297-1304. Go to original source...
  17. Husch B., Beers T.W., Kershaw J.A. (2003): Forest Mensuration. 4th Ed. Hoboken, John Wiley & Sons: 443.
  18. Kouba Y., Alados C.L. (2012): Spatio-temporal dynamics of Quercus faginea forests in the Spanish Central Pre-Pyrenees. European Journal of Forest Research, 131: 369-379. Go to original source...
  19. Kramer H., Akça A. (1995): Leitfaden zur Waldmesslehre. Frankfurt am Main, Sauerländer J.D.: 298.
  20. Kuželka K., Marušák R. (2014): Use of nonparametric regression methods for developing a local stem form model. Journal of Forest Science, 60: 464-471. Go to original source...
  21. Lehmann A., Overton J.M., Leathwick J.R. (2003): GRASP: generalized regresssion analysis and spatial prediction. Ecological Modelling, 160: 165-183. Go to original source...
  22. Lu J., Zhang L. (2013): Evaluation of structure specification in linear mixed models for modeling the spatial effects in tree height-diameter relationships. Annals of Forest Research, 56: 137-148.
  23. Martin F., Flewelling J. (1998): Evaluation of tree height prediction models for stand inventory. Western Journal of Applied Forestry, 13: 109-119. Go to original source...
  24. Mehtätalo L. (2004): A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research, 34: 131-140. Go to original source...
  25. Moisen G.G., Freeman E.A., Blackard J.A., Frescino T.S., Zimmermann N.E., Edwards Jr. T.C. (2006): Prediciting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199: 176-187. Go to original source...
  26. Moisen G.G., Frescino T.S. (2002): Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157: 209-225. Go to original source...
  27. Nanos N., Calama R., Montéro G., Gil L. (2004): Geostatistical prediction of height/diameter models. Forest Ecology and Management, 195: 221-235. Go to original source...
  28. Peng C. (1999): Nonlinear height-diameter models for nine boreal forest tree species in Ontario. OFRI - Report No. 155. Sault St. Marie, Ontario, Ontario Forest Research Institute, Ontario Ministry of Natural Resources: 28.
  29. Peng C., Zhang L., Liu J. (2001): Developing and validating nonlinear height-diameter models for major tree species of Ontario's boreal forests. Northern Journal of Applied Forestry, 18: 87-94. Go to original source...
  30. Petterson H. (1955): Barrskogens volymproduktion. Meddelanden från Statens skogsforskningsinstitut, 45: 1-391.
  31. Pretzsch H. (2009): Forest Dynamics, Growth and Yield: From Measurement to Model. Berlin, Heidelberg, SpringerVerlag: 664. Go to original source...
  32. R Development Core Team (2013): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org (accessed March 1, 2013).
  33. Robinson A.P., Lane S.E., Thérien G. (2011): Fitting forestry models using generalized additive models: a taper model example. Canadian Journal of Forest Research, 41: 1909-1916. Go to original source...
  34. Schmidt M., Kiviste A., von Gadow K. (2011): A spatially explicit height-diameter model for Scots pine in Estonia. European Journal of Forest Research, 130: 303-315. Go to original source...
  35. Šmelko Š. (2007): Dendrometria. Zvolen, Technická univerzita vo Zvolene: 400.
  36. Trincado G., VanderSchaaf C.L., Burkhart H.E. (2007): Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 126: 253-262. Go to original source...
  37. Van Laar A., Akça A. (2007): Forest Mensuration. Managing Forest Ecosystems. Vol. 13. Dordrecht, Springer: 383. Go to original source...
  38. Vargas-Larreta B., Castedo-Dorado F., Alvarez-Gonzalez F.J., Barrio-Anta M., Cruz-Cobos F. (2009): A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). Forestry, 82: 445-462. Go to original source...
  39. Wang Y., Raulier F., Ung C.H. (2005): Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods - a case study of lodgepole pine productivity. Forest Ecology and Management, 214: 201-211. Go to original source...
  40. Wood S.N. (2006): Generalized Additive Models: An Introduction with R. Boca Raton, Chapman and Hall/CRC: 410.
  41. Yue C., Kohnle U., Kahle H.P., Klädtke J. (2012): Exploiting irregular measurement intervals for the analysis of growth trends of stand basal area increments: A composite model approach. Forest Ecology and Management, 263: 216-228. Go to original source...
  42. Zhang L. (1997): Cross-validation of non-linear growth function for modelling tree height-diameter relationships. Annals of Botany, 79: 251-257. Go to original source...
  43. Zhang L., Ma Z., Guo L. (2008): Spatially assessing model errors of four regression techniques for three types of forest stands. Forestry, 81: 209-225. Go to original source...
  44. Zhang L., Gove J.H. (2005): Spatial assessment of model errors from four regression techniques. Forest Science, 51: 334-346. Go to original source...
  45. Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A., Smith G.M. (2009): Mixed Effects Models and Extensions in Ecology with R. New York, Springer: 574. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.