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to the modelling of the tree height-diameter relationship
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ABSTRACT: Generalized additive models were tested using three types of smoothing functions as an alternative for 
modelling the height curve. The models were produced for 23 forest stands of Norway spruce (Picea abies [L.] Karst.) 
in the territory of the Training Forest Enterprise Masaryk Forest Křtiny. The results show that the best evaluated 
and recommended for practical use at the level of forest stand was the LOESS function (locally weighted scatterplot 
smooting) when using a greater width of the bandwidth. Due to the frequent overfitting and the associated unrealistic 
behaviour of the function, smoothing by spline functions cannot be recommended for modelling the height curve at 
the level of forest stand. It was validated that the resulting model must be assessed not only according to the calcu-
lated quality criteria, but also depending on the graphic pattern of the model which must ensure that the height curve 
pattern is realistic. The quality of the resulting models (with LOESS function) was assessed to be high, mainly due to 
the very precise determination of model heights.  
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A large number of variables are measured as part 
of the forest inventory. Of these, tree height and di-
ameter at breast height are considered to be essen-
tial. Unlike measuring a diameter at breast height, 
which is easy and inexpensive, measuring height 
consumes considerable time and money (Adame 
et al. 2008). Although the cost of the latter can 
be reduced due to the use of distance-measuring 
ultrasound and laser technology, height measure-
ment is still a very labour-intense method (Var-
gas-Larreta et al. 2009). Therefore fitted heights 
are often used instead of measured heights. Fitted 
heights are derived from the model of the height-
diameter relationship which is compiled from the 
measured heights and diameters (Huang et al. 
1992; Martin, Flewelling 1998). A height curve 
is graphical expression of the height-diameter re-
lationship. According to Schmidt et al. (2011), 
attempts to reduce costs of height measurement 
made the height-diameter relationship model one 
of the most important results of the evaluation of 
forest inventory data. 

The height curve model is one of the regression 
models and can be written down using a math-

ematical relationship referred to as the height 
function and designed especially for this purpose. 
There is currently a large number of such func-
tions; a comprehensive listing can be found e.g. in 
the papers of Peng (1999), Huang et al. (2000), 
Husch et al. (2003), Šmelko (2007) or Van Laar 
and Akça (2007). Mehtätalo (2004) compared 
results of different papers regarding the compari-
son of height-diameter models (e. g. Curtis 1967; 
Arabatzis, Burkhart 1992; Huang et al. 1992; 
Fang, Bailey 1998). He concluded that none of 
these functions can generally be described as the 
best. A height curve can be modelled in other ways. 
Among the most common are adjusted models of 
growth functions (e.g. Zhang 1997; Peng et al. 
2001) or mixed-effects models (e.g. Trincado et 
al. 2007; Castaño-Santamaría et al. 2013; Lu, 
Zhang 2013). The height-diameter relationship is 
influenced by numerous factors, particularly by site 
quality and silvicultural treatments. In many in-
stances, such relationships feature a complex non-
linear process which is difficult to describe using 
ordinary parametric models (Nanos et al. 2004). 
Additionally, a failure to meet the requirements 
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placed on the least squares method (e.g. normal-
ity and independence of residuals etc.) may often 
be a problem. Possible solutions to the problems 
outlined above include the use of nonparametric 
methods that are robust towards the conditions re-
quired by the least squares method. Of these, a gen-
eralized additive model (GAM) can be considered 
as an alternative for modelling the height-diameter 
relationship, a technique that employs different 
smooth functions to produce the model. The sum 
of smooth functions of covariates is included in the 
predictor of a GAM. Dependence of the response 
variable on the covariates in the GAM is speci-
fied only in terms of smooth functions rather than 
detailed parametric relationships (Wood 2006). 
Writing down the equation with parameters is thus 
not possible. However, it is data that determines 
the resulting shape of the model. The final GAM 
therefore has a degree of flexibility that cannot be 
achieved in linear or nonlinear modelling (Rob-
inson et al. 2011). The same authors referred to 
GAMs as being suitable for modelling in forestry 
at the very moment when the task is the best pos-
sible fitting rather than making the best estimate of 
model parameters. Wang et al. (2005) reported that 
GAMs are more resistant to extreme values ​​than 
other linear or nonparametric methods. The same 
conclusions were reached by Byun et al. (2013) in 
their paper. Moisen et al. (2006) pointed to the fact 
that in addition to fitting quality, GAMs are easy to 
interpret. In forestry, this modelling technique can 
be encountered in a range of applications over the 
past few years, e.g. in the papers of Falk and Mel-
lert (2011) and Kouba and Alados (2012), who 
dealt with the modelling of spatial dynamics of tree 
species, Wang et al. (2005), Albert and Schmidt 
(2010) and Aertsen et al. (2012), who discussed 
the site-specific production capacity, Robinson et 
al. (2011) and Kuželka and Marušák (2014), who 
modelled the stem form or Byun et al. (2013), who 
modelled the diameter growth of trees or Zhang et 
al. (2008) and Schmidt et al. (2011), who modelled 
exactly height curves of various tree species, but 
used only different spline functions without using 
the LOESS function. Based on previous statements, 
three key advantages suggest to prefer a GAM in-
stead of a classic height curve: (i) higher flexibility 
of the model, (ii) robustness against outliers, (iii) 
no usage limitations as in the case of OLS regres-
sion (normality or independence of residuals).

All three advantages overlap, which implies that 
GAM-based height curve could be utilized in forest 
stands where OLS-based methods do not perform 
satisfactorily or where preconditions for OLS ap-

plication are not met. A typical example is a for-
est stand with higher diameter or height variability 
where a few suppressed or, on the contrary, domi-
nating trees can affect the height curve position 
and thus the resulting model. 

The aim of this study is to assess the possibility of 
practical use of various types of generalized addi-
tive models as alternatives for modelling the height 
curve on the level of forest stand with special em-
phasis being placed on the resulting quality of the 
fitted model.

MATERIAL AND METHODS

Data were collected in the territory of Masaryk 
Forest Křtiny Training Forest Enterprise, the spe-
cial-purpose premises of Mendel University in 
Brno. It involved 23 forest stands of Norway spruce 
(Picea abies [L.] Karst.), the age range being 30 to  
136 years. Two sample plots were placed in each for-
est stand. The plot size was determined based on the 
requirement for a sufficient number of trees per plot 
and graded per age. The size of the plots was 250 m2  
(r = 8.92 m) in stands under 40 years, 700 m2 in 
stands aged 41–80 years (r = 14.93 m), and 1,200 m2 

in stands aged 81 years and more (r = 19.54 m). Tree 
height using a Vertex Laser hypsometer to the near-
est 0.1 m and diameter at breast height using a calli-
per to the nearest 1 cm were measured on the plots.  
A total of 1,590 trees were measured. 

GAMs were compiled for three different smooth-
ing functions: these involved spline, cubic spline 
and LOESS types. A GAM can be written down us-
ing the Equation (1):

∧hi = a + fs (d1.3i) + εi	  (1)

where: 
∧
hi  – fitted height of a tree i, 
a  – intercept of the model, 
fs  – smoothing function, 
d1.3i  – diameter at breast height of a tree i, 
εi  – residual value.

While assuming normal distribution for the de-
pendent variable (height), the identity link function 
was chosen for the dependent to independent vari-
able relationship. For smoothing functions, the task 
was to fit the data with a curve so that the curve 
most closely copies the behaviour of the data, thus 
minimising the degree of deviance. It is thus re-
ferred to as a data driven technique. In this type of 
technique, inspecting the actual curve behaviour is 
fundamental to avoid overfitting which causes the 
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resulting model becoming adjusted to the measured 
values too much ​​regardless of the model’s practical 
applicability and sense. Subsequently, such a model 
cannot be applied to any other data, or at least its 
use gives very poor results.

Different methods are used for determining the op-
timal degree of smoothing; this varies based on the 
type of smoothing function applied. In the event of 
the LOESS function, it is important to find the op-
timal width, i.e. bandwidth; indicating the degree 
of smoothing, it specifies the width of the interval 
around each of the measured values. This whole in-
terval is fitted with a function using linear-weighted 
regression and a fitted value is determined for the 
measured value (Zuur et al. 2009). A suitable band-
width is searched for using the Akaike information 
criterion – AIC (Akaike 1973). In spline functions, 
the procedure is different. The data file is divided into 
segments separated by nodes. Individual segments are 
fitted by regression models (the spline function uses 
a linear model, while cubic spline uses the 3rd degree 
polynomials). Segments are joined together where 
they form nodes. For more details about joining the 
segments refer to the paper of Wood (2006). The de-
gree of smoothing is specified through the number of 
nodes. The optimal number of nodes is chosen using 
a leave-one-out cross-validation.

The models formed were compared with each 
other as well as with a traditional height curve 
computed by nonlinear regression using the Pet-
terson function (Petterson 1955). This function 
can be written down using the Equation (2):

∧
hi = 1.3 + 1/(a + b/d1.3i)

3 	  (2)

where: 
∧
hi	 – fitted height of a tree i, 
a 	 – intercept of the model, 
b 	 – regression parameter,
d1.3i 	– diameter at breast height of a tree i.

This function was chosen because it is recom-
mended as a very good function in papers such as 
Kramer and Akça (1995), Van Laar and Akça 
(2007), Pretzsch (2009) or Drápela (2011). The 
mutual comparison of different models took place in 
each of the 23 forest stands separately. To compare 
different models, the following criteria were chosen: 
– Amount of explained deviance (Dobson 2002) (Eq. 3):

pseudo R2 = 100 × (D0 – Dr)/D0 	  (3)

where:
D0 – null deviance;
Dr – residual deviance.

– Akaike information criterion (Eq. 4):

AIC = n × ln((∑e2
i)/n) + 2 × m 	  (4)

where:
ei  – residual value,
n  – sample size,
m  – number of parameters.

– Mean of residuals (Eq. 5):

ēi = (∑ei)/n 	  (5)

where: 
n  – sample size, 
ei  – residual value.

– Residual standard deviation (Eq. 6):

σei
=√(∑(ei – ēi)

2/n 	  (6)

where: 
n  – sample size, 
ei  – residual value, 
ēi  – mean of residuals.

– Mean of deviation of fitted values obtained from 
the additive model and fitted values obtained from 
the nonlinear regression model (Eq. 7):

∆ig = ∑
n
i=1|ŷigam

 – ∧yinlr
|/n 	  (8)

where:
∧yigam

 	– fitted value of a tree i (i = 1, 2, 3, …, n) from the 
additive model, 

∧yinlr
 	 – fitted value of a tree i (i = 1, 2, 3, …, n) from the non-

linear regression model and n is the sample size.
– Visual similarity to the height curve model fitted 

by nonlinear regression,
– The realism of the model behaviour.

The realism of model behaviour implies that the 
model meets the general height curve requirements 
(Šmelko 2007). The most important is that the curve 
must be non-decreasing.

Deviance is calculated in models which use the 
maximum likelihood method (Zuur et al. 2009). 
Zero deviance equals the total sum of squares, while 
residual deviance corresponds to the residual sum of 
squares in regression models.

All calculations were performed using the R soft-
ware (R Development Core Team 2013). The results 
are presented with 95% confidence, i.e. at the signifi-
cance level of α = 0.05.

RESULTS

All the calculated evaluation criteria are listed 
in Table 1. The value in brackets for the LOESS 
function shows the bandwidth. According to the 



238 J. FOR. SCI., 61, 2015 (6): 235–243

Table 1. Criteria for generalized additive models

Forest stand Smoothing function Pseudo R2 (%) AIC –ei σei Δig (m)

1
spline 68.6 194.97 0.0000 1.0887 0.0068

cubic spline 68.6 194.95 0.0000 1.0885 0.0068
LOESS (0.70) 67.9 195.97 0.0000 1.1001 0.0063

2
spline 42.6 137.34 0.0000 1.2155 0.0019

cubic spline 42.6 137.34 0.0000 1.2155 0.0019
LOESS (0.75) 42.8 139.68 0.0000 1.2140 0.0011

3
spline 85.3 150.48 0.0000 0.9454 0.0017

cubic spline 85.3 150.51 0.0000 0.9460 0.0017
LOESS (0.65) 84.9 151.55 0.0000 0.9582 0.0023

4
spline 74.8 160.57 0.0000 0.9906 0.0044

cubic spline 81.3 155.68 0.0000 0.8542 0.0121
LOESS (0.75) 74.3 160.77 0.0000 1.0010 0.0040

5
spline 86.3 231.72 0.0000 0.9176 0.0063

cubic spline 86.3 231.74 0.0000 0.9180 0.0063
LOESS (0.60) 85.9 232.61 0.0000 0.9319 0.0050

6
spline 76.2 262.44 0.0000 1.3463 0.0151

cubic spline 76.2 262.44 0.0000 1.3463 0.0151
LOESS (0.85) 76.4 263.63 0.0000 1.3409 0.0122

7
spline 74.7 368.21 0.0000 1.2990 0.0156

cubic spline 74.6 368.47 0.0000 1.3012 0.0148
LOESS (0.80) 70.0 377.74 0.0000 1.4145 0.0054

8
spline 75.4 260.88 0.0000 1.3662 0.0057

cubic spline 75.4 260.89 0.0000 1.3666 0.0057
LOESS (0.95) 74.7 261.98 0.0000 1.3893 0.0075

9
spline 62.5 213.43 0.0000 1.4805 0.0049

cubic spline 62.5 213.43 0.0000 1.4804 0.0049
LOESS (0.85) 62.5 213.48 0.0000 1.4791 0.0041

10
spline 74.6 363.12 0.0000 1.8864 0.0224

cubic spline 74.5 363.28 0.0000 1.8903 0.0218
LOESS (0.85) 72.7 366.51 0.0000 1.9564 0.0124

11
spline 88.5 269.38 0.0000 1.2589 0.0189

cubic spline 88.6 269.14 0.0000 1.2549 0.0194
LOESS (0.80) 86.7 275.69 0.0000 1.3545 0.0059

12
spline 71.2 269.25 0.0000 1.4976 0.0085

cubic spline 71.2 269.16 0.0000 1.4959 0.0087
LOESS (0.80) 69.2 271.23 0.0000 1.5483 0.0046

13
spline 76.0 182.60 0.0000 1.2100 0.0062

cubic spline 76.3 182.35 0.0000 1.2029 0.0069
LOESS (0.85) 72.7 184.29 0.0000 1.2912 0.0034

14
spline 41.5 288.23 0.0000 1.9991 0.0109

cubic spline 41.5 288.23 0.0000 1.9991 0.0109
LOESS (0.95) 42.1 288.64 0.0000 1.9891 0.0150

15
spline 82.1 298.50 0.0000 1.5088 0.0076

cubic spline 82.2 298.40 0.0000 1.5074 0.0078
LOESS (0.75) 81.7 299.40 0.0000 1.5289 0.0056

16
spline 60.1 299.66 0.0000 2.4324 0.0116

cubic spline 60.0 299.70 0.0000 2.4348 0.0114
LOESS (0.80) 58.8 300.29 0.0000 2.4693 0.0091

17
spline 68.5 273.68 0.0000 1.4473 0.2159

cubic spline 69.3 271.65 0.0000 1.4292 0.2187
LOESS (0.95) 57.3 282.67 0.0000 1.6851 0.0089
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numerical results all functions used are acceptable 
and not a single type of smoothing function can be 
referred to as the best. However, in the graphics 
rendered by the used functions, the differences are 
already clearly visible. The spline functions have 
problems with overfitting, which caused in some 
cases a biologically unacceptable and unfounded 
shape of the function. For instance, there are sever-
al cases of the height decreasing as the diameter in-
creases. This is due to the choice of the method for 
finding an optimal degree of smoothing when the 
cross-validation actually seeks for a model that best 
fits the data field regardless of the practical use of 
the resulting model. Of the 23 forest stands, there 
was a problem with the realism of the behaviour in 
5 cases for spline and in 8 cases for cubic spline. It 
is important to note that all the numerical results 
(shown in Table 1) in these forest stands showed no 
problems; indeed, they indicated a model of very 
good quality.

The LOESS function very well modelled the 
height-diameter relationship in all stands with a 
very similar behaviour of the function as a model 
of the Petterson height curve. It is due to this fact 
that the resulting model was chosen as a compro-
mise between the degree of smoothing and the 
realism of its behaviour. Therefore the resulting 
model generated through the LOESS function may 
not have the best values ​​of numerical criteria com-

pared with spline functions, but will always have a 
biological justification. The values ​​of the resulting 
criteria were never so different from those ​​obtained 
through spline functions to permit speaking of a 
model of lesser quality. Actually, the resulting mean 
values ​​of deviations of the fitted values ​​obtained 
through the additive model (using the LOESS func-
tion) from the fitted values ​​of nonlinear model (last 
column of Table 1) make it possible to refer to the 
resulting models as models with a very good capa-
bility of fitting. 

When the LOESS function was used, a model with 
the bandwidth exceeding 0.60 was selected to be the 
final model in all of the forest stands. It can therefore 
be concluded that rather a larger bandwidth should 
be chosen when using the LOESS function in GAMs 
at a local level to prevent the overfitting of the model. 

Graphical outputs of several forest stands are 
shown in Fig. 1. These three forest stands were se-
lected to represent the whole set under study: the 
range of ages and other dendrometric variables 
such as heights and diameters. The ages of stands 
No. 3, 13 and 23 were 35, 88 and 136 years, respec-
tively. Fig. 1a presents the behaviour of GAMs and 
that of the nonlinear model of the Petterson func-
tion in forest stand No. 13; it is clearly shown that 
the models fitted using splines and cubic splines are 
practically unacceptable (the tree height decreas-
ing as the diameter increases), while the behaviour 

Forest stand Smoothing function Pseudo R2 (%) AIC –ei σei Δig (m)

18
spline 58.3 241.33 0.0000 1.8662 0.0033

cubic spline 58.4 241.27 0.0000 1.8633 0.0037
LOESS (0.95) 56.5 242.39 0.0000 1.9053 0.0045

19
spline 64.5 339.13 0.0000 1.5617 0.0063

cubic spline 68.3 338.16 0.0000 1.4746 0.0150
LOESS (0.95) 63.9 339.61 0.0000 1.5743 0.0081

20
spline 53.6 380.35 0.0000 2.0619 0.0054

cubic spline 59.0 379.67 0.0000 1.9385 0.0225
LOESS (0.95) 53.0 380.50 0.0000 2.0741 0.0040

21
spline 58.1 305.99 0.0000 1.6750 0.0103

cubic spline 58.1 305.96 0.0000 1.6749 0.0103
LOESS (0.85) 57.6 306.00 0.0000 1.6852 0.0099

22
spline 57.8 272.45 0.0000 2.6356 0.0136

cubic spline 57.8 272.45 0.0000 2.6356 0.0136
LOESS (0.95) 58.4 272.79 0.0000 2.6159 0.0187

23
spline 72.0 236.27 0.0000 1.8403 0.0283

cubic spline 73.0 234.86 0.0000 1.8089 0.0299
LOESS (1.00) 58.5 246.38 0.0000 2.2415 0.0082

pseudo R2 (%) – amount of explained deviance, AIC – Akaike information criterion, –ei – mean residual, σei – residual standard 
deviation, Δig – the mean of deviations of fitted values obtained from the additive model and fitted values obtained from 
the nonlinear regression model (with LOESS function a bandwidth is in the brackets)

Table 1. to be continued
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the LOESS function shows is very similar to that of 
the Petterson model and the function has a realistic 
behaviour. 

Fig. 1b also illustrates very well the overfitting of 
the model fitted through the spline functions in forest 
stand No. 23. The lack of realism of the model seen 
in this case is based on the fitted values ​​oscillating 
around the nonlinear model of the Petterson func-
tion. The model fitted through the LOESS function 
has a good and applicable behaviour again. 

Fig. 1c shows the behaviour of GAMs and the non-
linear model of the Petterson function in forest stand 
No. 3. With the behaviour of all the evaluated models 
being in fact consistent, the individual models overlap 
in the chart. All the models could be used to shape the 
height curve in the forest stand with no differences in 
the quality of fitting.

The generalized additive model using the LOESS 
function can be labelled a fully applicable and suit-

able alternative for modelling height curves using 
nonparametric methods. If this type is applied at 
the local level, i.e. a height curve model in the for-
est stand, a larger bandwidth should be used to pre-
vent overfitting and ensure the realistic behaviour 
of the modelled curve. 

DISCUSSION

In the case of very complicated relationships be-
tween the dependent and independent variables it 
is often very difficult to find a suitable mathemati-
cal function for fitting the relationship (Robinson 
et al. 2011). Finding the right estimates of the pa-
rameters of such a model is another common prob-
lem. For modelling a height curve using GAMs, 
three different smoothing functions were tested ‒ 
spline, cubic spline and LOESS. They are recom-
mended for use in forestry models e.g. by Moisen 
and Frescino (2002), Wang et al. (2005), Zhang 
et al. (2008), Falk and Mellert (2011) and Yue et 
al. (2012). 

For spline functions, cross-validation was chosen 
to be the method for selecting the optimum degree 
of smoothing. Even this method, however, failed in 
several cases to choose a model without overfitting. 
Falk and Mellert (2011) denoted this method 
to be very good while adding that monitoring the 
ecological understandability of the resulting model 
was still necessary.

The fact that, in all stands, the LOESS function 
performed better than the spline function can be 
attributed to the worse performance of spline func-
tion when there was a higher data variability. This is 
apparent in Fig. 1. The previous statement implies 
that the use of GAM with LOESS function can be 
advantageous in stands with higher data variability. 

According to the results obtained, GAMs can be 
considered a suitable alternative for modelling the 
height curve. The same conclusions were reported 
by Zhang et al. (2008) and Schmidt et al. (2011). 
Zhang et al. (2008) recommended this method as 
suitable for modelling the height curve after test-
ing the GAM model using the spline function on 
several tree species in Ontario, Canada. He also 
confirmed the hypothesis that the mean residuals 
of GAMs are lower than those of models calcu-
lated by the least squares method. Schmidt et al. 
(2011) examined the compilation of a height curve 
in Scots pine (Pinus sylvestris L.) using the GAM 
model for the territory of Estonia with a penalised 
cubic spline used as the smoothing function. This 
function does not use different numbers of nodes; 
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instead, a large number of nodes are chosen and the 
degree of smoothing is determined by means of the 
parameter λ, the optimum value which is searched 
for applying cross-validation. Furthermore, this 
GAM model included also a stand variable; more 
specifically mean diameter at breast height of the 
stand, so that the author was able to produce a sys-
tem of uniform height curves.

From a practical aspect, a height curve produced 
using GAM where the emphasis is placed on the 
most accurate determination of heights can be 
used. This means that it can find its application not 
only when identifying the standing volume using 
volume tables, but particularly also in modelling 
heights on research plots where the heights can be 
used for calculating the increment in height and 
subsequently in volume as part of repeated forest 
inventory operations. Modelling missing heights in 
stands that serve as a basis for growth simulation is 
another alternative. Using GAMs instead of ordi-
nary parametric models thus eliminates the prob-
lem of initial estimates of function parameters.

One of the results of our research was the state-
ment that GAMs provided a very accurate fitting. 
Zhang and Gove (2005) argued that in GAMs, 
the good quality of fitting is due to their robustness 
and flexibility. Although they modelled the crown 
area – diameter at breast height relationship, their 
results can be regarded as a general statement for 
this method. Therefore it is possible to compare 
our results with those of Zhang and Gove (2005). 

 It is stated in various papers that GAMs are 
capable of describing strongly nonlinear relation-
ships occurring in an ecosystem (Byun et al. 2013) 
and also the behaviour of biological processes 
(Frescino et al. 2001; Austin 2002; Lehmann et 
al. 2003). This was only partially confirmed in our 
study because only the LOESS-based model was 
ecologically plausible and capable of modelling the 
nonlinear relationship of local scale height curve.

CONCLUSIONS

Based on the results obtained, GAMs can be 
considered as a suitable alternative for model-
ling a height curve. Differences were shown be-
tween smoothing functions when using them at 
the stand level. The LOESS type with a greater 
bandwidth can be described as the best as they 
prevented the overfitting of the resulting model. 
Overfitting was a problem for both the spline 
functions. The insufficient performance of spline 
functions could be caused by higher data variabil-

ity in forest stands under study. When selecting 
the resulting model, the decision cannot be driven 
solely by the calculated values ​​of benchmarks; the 
graphical pattern of the model needs to be moni-
tored with respect to the behaviour realism. The 
resulting model should be a trade-off between the 
interleaving smoothness and the realism of the 
model behaviour. Since the deviation of GAMs 
from nonlinear models is very small, very good 
results were obtained for fitted heights. GAMs 
can therefore be used not only for modelling the 
height curve in determining the standing vol-
ume using volume tables, but also for modelling 
heights in growth simulators or modelling missing 
heights on research plots.
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