J. For. Sci., 2010, 56(4):165-170 | DOI: 10.17221/65/2009-JFS

Diameter structure of the stands of poplar clones

R. Petráš, J. Mecko, V. Nociar
National Forest Centre - Forest Research Institute in Zvolen, Zvolen, Slovakia

The construction of a continuous mathematical model of frequency distributions of the diameters of trees of poplar clones Robusta and I-214 in dependence on tree diameter and mean diameter of stand is presented. Empirical material consists of diameter measurements on research plots from poplar regions in Slovakia. There were 90 plots for I-214 clone and 142 plots for Robusta clone. There were about 10-250 trees with mean diameter 2-70 cm on the research plots. The model was derived according to the three-parameter Weibull function. Its parameters were estimated by maximum likelihood method of the logarithm of the probability density function. Smoothed sample probability densities were processed in continuous mathematical models where the probability density of trees in stands is a function of their diameters and mean diameter of the stand. The method of regression smoothing of the parameters of Weibull function from sample sets in dependence on their mean diameter was used. In the whole range of mean diameters both clones have slightly left-skewed distribution with a relatively small variation range.

Keywords: diameter distribution function; frequency distributions of diameters; poplar clones; Robusta; I-214; Weibull function

Published: April 30, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Petráš R, Mecko J, Nociar V. Diameter structure of the stands of poplar clones. J. For. Sci. 2010;56(4):165-170. doi: 10.17221/65/2009-JFS.
Download citation

References

  1. Bailey R.L., Dell T.R. (1973): Quantifying diameter distributions with the Weibull function. Forest Science, 19: 97-104.
  2. Čermák V., Petráš R. (1984): Diameter structure of larch stands. Lesnícky časopis - Forestry Journal, 30: 407-427.
  3. Gadow K. (1984): Erfassung von Durchmesserverteilungen in gleichaltrigen Kiefernbeständen. Forstwesen Centralblatt, 103: 360-374. Go to original source...
  4. Gaffrey D., Saborowski J., Spelsberg G. (1998): Baumartenspezifische Funktionen zur Schätzung von Bestandesdurchmesserverteilungen. Allgemeine Forst- und Jagdzeitung, 169: 81-86.
  5. Gerold D., Altmann H., Balke K.W., Kross M. (1982): Beitrag zum Höhenwachstum, zur Durchmesser- und Sortenstruktur von Buchenbeständen. Beiträge für das Forstwirtschaft, 3: 122-128.
  6. Hafley W., Schreuder H.T. (1977): Statistical distributions for fitting diameter and height data in even-aged stands. Canadian Journal of Forest Research, 7: 481-487. Go to original source...
  7. Hessenmöller D., Gadow K. (2001): Beschreibung der Durchmesserverteilung von Buchenbestanden mit Hilfe der bimodalen Weibullfunktion. Allgemeine Forst- und Jagdzeitung, 172: 46-50.
  8. Hui G., Gadow K. (1996): Ein neuer Ansatz zur Modellierung von Durchmesserverteilungen. Centralblatt für das gesamte Forstwesen, 113: 101-113.
  9. Kangas A., Maltamo M. (2000): Calibrating predicted diameter distribution with additional information. Forest Science, 46: 390-396. Go to original source...
  10. Karczmarski J. (2005): Dbh distribution structure in natural spruce stands on the upper montane belt in the Tatra and Beskid mountains in respect to the stages and phases of virgin type forest development. Sylwan, 149: 12-33.
  11. Kärki T., Maltamo M., Eerikäinen K. (2000): Diameter distribution, stem volume and stem quality models for grey alder (Alnus incana) in eastern Finland. New Forests, 20: 65-86. Go to original source...
  12. Kennel R. (1972): Die Buchendurchforstungsversuche in Bayern von 1870 bis 1970. Mit dem Modell einer Strukturertragstafel für die Buche. München, Forschungsberichte Forstliche Forschungsanstalt: 264.
  13. Kupka I. (1985): Mathematical model of frequency distribution of diameters in stand. Zprávy lesnického výzkumu, 30: 28-30. (in Czech)
  14. Kupka I. (1987): The diameter structure of forest stand expressed by Weibull function. Lesnictví, 33: 245-254. (in Czech)
  15. Kupka K. (2004): QC.Expert-Software for Statistical Data Analysis. Pardubice, TriloByte Ltd: 213.
  16. Meloun M., Militký J. (2002): Compendium of Statistical Data Processing. Praha, Academia: 764.
  17. Merganič J., Sterba H. (2006): Characterisation of diameter distribution using the Weibull function: method of moments. European Journal of Forest Research, 125: 427-439. Go to original source...
  18. Nagel J., Biging G.S. (1995): Schätzung der Parameter der Weibullfunktion zur Generierung von Durchmesserverteilungen. Allgemeine Forst- und Jagdzeitung, 166: 185-189.
  19. Nanos N., Montero G. (2002): Spatial prediction of diameter distribution models. Forest Ecology and Management, 161: 147-158. Go to original source...
  20. Palahi M., Pukkala T., Trasobares A. (2006): Calibrating predicted tree diameter distributions in Catalonia, Spain. Silva Fennica, 40: 487-500. Go to original source...
  21. Petráš R., Mecko J. (2001): Erstellung eines mathematischen Modells der Ertragstafeln für Pappelklone in der Slowakei. Allgemeine Forst- und Jagdzeitung, 172: 30-34.
  22. Petráš R., Mecko J., Nociar V. (2007): Models of the raw timber quality of trees for poplar clones. Lesnícky časopis - Forestry Journal, 53: 83-97. (in Slovak)
  23. Sedmák R. (2005): Diameter-distribution modeling of premature beech stands. Acta Facultatis Forestalis Zvolen, 47: 291-306.
  24. Van Laar a., Mosandl R. (1989): Durchmesserverteilung in Eichenjungbeständen. Allgemeine Forst- und Jagdzeitung, 160: 189-194.
  25. Zöhrer F. (1969): Ausgleich von Häufigkeitsverteilung mit hilfe der Beta-Funktion. Forstarchiv, 40: 37-42.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.