J. For. Sci., 2009, 55(8):345-356 | DOI: 10.17221/9/2009-JFS

Humus conditions of stands with different proportion of Douglas fir in the Hůrky Training Forest District and Křtiny Training Forest Enterprise

L. Menšík1, J. Kulhavý1, P. Kantor2, M. Remeš1
1 Institute of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Brno, Czech Republic
2 Department of Forest Establishment and Silviculture, Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Brno, Czech Republic

The paper presented evaluates reserves and chemical composition of forest floor of three stands of Douglas fir, spruce and spruce with beech at acid sites (3K) in the Hůrky Training Forest District (TFD) and at a meso-trophic site (4H) in the Křtiny Training Forest Enterprise (TFE). The aim of the study was to evaluate: (i) reserves of forest floor, (ii) soil reaction, (iii) total content of carbon and nitrogen for the forest floor layers, iv) C/N ratio, and (v) the content of dissolved organic carbon (DOC). The lowest reserve occurs in the Douglas fir stand at a mesotrophic site (25.0 t/ha), the highest accumulation occurs in the spruce stand and in the spruce/beech stand at an acid site (79.4-79.6 t/ha). The soil reaction is strongly acid to acid. The most favourable values of pH for forest floor and soil at acid (4.6 ± 0.4) and mesotrophic sites (5.2 ± 0.4) occur in the Douglas fir stand. It also corresponds to C/N ratio (23-26). The highest reserve of carbon in forest floor occurs at the acid site 34.7 t/ha (1.3 t/ha nitrogen). The lowest reserve of carbon in forest floor at the mesotrophic site amounts to 8.5 t/ha (0.4 t/ha nitrogen). The higher content of DOC in stands at acid sites can result in a higher risk of soil acidification. Keywords: spe

Keywords: species composition; soil; forest floor reserves; pH; carbon and nitrogen; C, N ratio; DOC

Published: August 31, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Menšík L, Kulhavý J, Kantor P, Remeš M. Humus conditions of stands with different proportion of Douglas fir in the Hůrky Training Forest District and Křtiny Training Forest Enterprise. J. For. Sci. 2009;55(8):345-356. doi: 10.17221/9/2009-JFS.
Download citation

References

  1. Berger T.W., Neubauer CH., Glatzel G., 2002. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecology and Management, 159: 3-14. Go to original source...
  2. Binkley D., Giardina C., 1998. Why do tree species affects soil? The Warp and Woof of tree-soil interactions. Biogeochemistry, 42: 89-106. Go to original source...
  3. Bušina F., 2007. Natural regeneration of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) in forest stands of Training Forest District Hůrky, Higher Forestry School and Secondary Forestry School in Písek. Journal of Forest Science, 53: 20-34. Go to original source...
  4. Cote L., Brown S., Pare D., Fyles J., Bauhus J., 2000. Dynamics of carbon acid nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood. Soil Biology and Biochemistry, 32: 1079-1090. Go to original source...
  5. Čermák J., Kučera J., Bauerle W., Philips J., Hinckley T., 2007. Tree water storage and its diurnal dynamic related to sap flow and changes of trunk volume in oldgrowth Douglas-fir. Tree Physiology, 27: 181-198. Go to original source... Go to PubMed...
  6. Emmett B.A., Boxman D., Bredemeier M., Gundersen P., Kjonaas O.J., Moldan F., Schleppi P., Tietema A., Wright R.F., 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands. Evidence from the NITREX ecosystem scale experiments. Ecosystem, 1: 352-360. Go to original source...
  7. GREEN R.N., TROWNBRIDGE R.L., KLINKA K., TOWARDS A., 1993. Taxonomic Classification of Humus Forms. Forest Science Monograph 29, Supplement to Forest Science, 39: 49. Go to original source...
  8. Hruška J., Cienciala E., 2003. Long-term acidification and nutrient degradation of forest soils - limiting factors of forestry today. Prague, Ministry of Environment CR: 165.
  9. Kantor P., 2008. Production potential of Douglas fir at mesotrophic sites of Křtiny Training Forest Enterprise. Journal of Forest Science, 54: 321-332. Go to original source...
  10. Kantor P., Šach F., 2008. Water balance of young Norway spruce and European beech mountain stands in growing seasons 2005, 2006. Folia Oecologica, 35: 6-14.
  11. Kulhavý J., 1997. Acidifikace lesních půd jako půdní proces a ekologický faktor. [Habilitační práce.] Brno, Ústav ekologie lesa MZLU: 96.
  12. Lesná J., Kulhavý J., 2003. Evaluation of humus conditions under different forest stands: Beech vs. spruce dominated forest stand. Ekológia (Bratislava), 22, Supplement 3: 47-60.
  13. Magill A.H., Aber J.D., 2000. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biology and Biochemistry, 32: 603-613. Go to original source...
  14. Mařan B., Káš K., 1948. Biologie lesa I - pedologie a mikrobiologie lesa. Praha, Melantrich: 573.
  15. Michalzik B., Kalbitz K., Park J.H., Solinger S., Matzner E., 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry, 52: 173-205. Go to original source...
  16. MZE, 2008. Report on the state of forest and forestry in the Czech Republic 2007. Prague, Ministry of Agriculture of the Czech Republic: 98.
  17. Němec A., 1928. Studie o humifikaci lesních půd. Praha, MZe RČS, 38: 239.
  18. NĚMEČEK J., MACKŮ J., VOKOUN J., VAVŘÍČEK D., NOVÁK P., 2001. Taxonomický klasifikační systém půd České republiky. Praha, ČZU: 79.
  19. Pastor J., Aber D.J., McClaugherty Ch.A., Melillo M.J., 1984. Aboveground production and N a P cycling along nitrogen mineralization on Blackhawk Island, Wisconsin. Ecology, 65: 256-268. Go to original source...
  20. Pelíšek J., 1964. Lesnické půdoznalství. Praha, SZN: 568.
  21. Plíva K., 1987. Typologický klasifikační systém ÚHÚL. Brandýs nad Labem, ÚHÚL: 52.
  22. Prescott C.E., Chappell H.N., Vesterdal L., 2000. Nitrogen turnover in forest floors of coastal Douglasfir at sites differing in soil nitrogen capital. Ecology, 81: 1878-1886. Go to original source...
  23. Průša E., 2001. Pěstování lesů na typologických základech. 1. vyd. Kostelec nad Černými lesy, Lesnická práce: 594.
  24. Puhe J., Ulrich B., 2001. Global climate change and human impacts on forest ecosystems. Ecological Studies No. 143. Berlin, Springer: 593. Go to original source...
  25. Quitte E., 1971. Klimatické oblasti Československa. Studia Geographica 16. Brno, GgÚ ČSAV: 73.
  26. Robertson G.P., Bledsoe C.S., Coleman D.C., Sollins P. (eds), 1999. Standard Soil Methods for Long-term Ecological Research. New York, Oxford University Press: 462.
  27. Samec P., Formánek P., 2007. Mikrobiologie lesních půd. Kostelec nad Černými lesy, Lesnická práce: 126.
  28. SPARKS, D.J., 2003. Environmental Soil Chemistry. 2nd Ed. London, Academic Press: 352. Go to original source...
  29. Šály R., 1977. Lesnícke pôdoznalectvo. 2. vyd. Zvolen, VŠLD: 380.
  30. Šály R., 1978. Pôda - základ lesnej produkcie. Bratislava, Príroda: 235.
  31. TRUHLÁŘ J., 1996. Pěstování lesů v biologickém pojetí. Brno, MZLU, ŠLP: 117.
  32. Ulrich B., 1983. Soil acidity and its relations to acid deposition. In: Effects of accumulation of air pollutants in forest ecosystems. Proceedings of Workshop Held at Göttingen, West Germany 1982. Berlin, Springer: 127-146. Go to original source...
  33. Ulrich B., 1989. Effects of acidic precipitation on forest ecosystems in Europe. In: Adriano D.C., Johnson A.H. (eds), Acidic Precipitation. Vol. 2. Biological and Ecological Effects. New York, Springer-Verlag: 189-272. Go to original source...
  34. Van Breemen N., Finzi A.C., 1998. Plant-soil interactions. Ecological aspects and evolutionary implications. Biogeochemistry, 42: 1-19. Go to original source...
  35. Vitousek P., Gosz J.R., Grier Ch.C., Melillo J.M., Reiners W.A., 1982. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs, 52: 155-177. Go to original source...
  36. Waring R.H., Running S.W., 1998. Forest Ecosystems: Analysis at Multiple Scales. San Diego, London, Academic Press: 370.
  37. WRB, 2006. World reference base for soil resources 2006. IUSS Working Group. 2nd Ed. World Soil Resources Reports No. 103. Fao, Rome: 128.
  38. Yano Y., McDowell W.H., Aber J.D., 2000. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biology and Biochemistry, 32: 1743-1751. Go to original source...
  39. Zbíral J., Honsa I., Malý S., 1997. Analýza půd III. Jednotné pracovní postupy. Brno, ÚKZÚZ: 150.
  40. Zlatník A., 1976. Lesnická fytocenologie. Praha, SZN: 495.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.