J. For. Sci., 2008, 54(8):377-387 | DOI: 10.17221/36/2008-JFS

Natural abundance of 15N of a spruce forest ecosystem under acid rain and manipulated clean rain field conditions

S. P. Sah, R. Brumme, N. Lamersdorf
Institute of Soil Science and Forest Nutrition, University of Göttingen, Göttingen, Germany

We analysed stable isotopes of N in a spruce forest under ambient rainfall (no further manipulation of the atmospheric input) and clean rain application (10 years of reduced inorganic N- and acid-constituent input). The objectives of the study were to assess whether or not the natural 15N abundance would function as an indicator for the N-status of our forest ecosystems. For this purpose, natural 15N abundance values were measured in needles, litter fall, roots, soil, bulk precipitation, throughfall and soil water of both plots. In the bulk precipitation and throughfall the δ15N values of NO3-N were in the range reported by other studies (-16 to + 23‰). In both plots, the throughfall was greatly depleted of 15N compared to the bulk precipitation and this was attributed to nitrification in the canopy leaves, leading to δ15N-depleted nitrate production in the leaves that leaches down the soil surface. Nitrate in seepage water showed a general increase in δ15N values when it passes through the upper mineral soil (10 cm soil depth) and infiltrates into deeper mineral soil horizons (100 cm soil depth), similar to the δ15N enrichment of total nitrogen in the mineral soil. We observed 15N depletion in both green needles and litter fall at the clean rain plot, compared to the N-saturated control plot. We assumed it to be due to increased mycorrhizal N-uptake under N limited, i.e. clean rain conditions which are indicated by relatively lower N concentrations of green needles. With respect to the vertical gradient of the 15N abundance in the forest floor, both plots differ from each other, showing an untypical peak of δ15N depletion in the humus layer, which is more pronounced at the control plot. In contrast to the mineral soil where mineralisation is a dominant process for fractionation we attribute the δ15N pattern in the forest floor to additional processes like litter input and immobilisation. We conclude that the δ15N natural abundance analysis is helpful for interpreting the N-status of forest ecosystems but further research is needed especially with respect to the soil-root interface.

Keywords: acid rain; clean rain; δ15N; stable isotopes; nitrogen; precipitation; throughfall; seepage water; needles; litter; spruce forest

Published: August 31, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sah SP, Brumme R, Lamersdorf N. Natural abundance of 15N of a spruce forest ecosystem under acid rain and manipulated clean rain field conditions. J. For. Sci. 2008;54(8):377-387. doi: 10.17221/36/2008-JFS.
Download citation

References

  1. Aber J.D., Nadelhoffer K.J., Steudler P.A., Melillo J.M., 1989. Nitrogen saturation in forest ecosystems. Bioscience, 39: 378-386. Go to original source...
  2. Blanck K., Lamersdorf N., Bredemeier M., 1993. Bodenchemie und Stoffhaushalt auf den Dachfläche in Solling. Forstarchiv, 64: 164-172.
  3. Bredemeier M., Blanck K., Wiedey G.A., 1993. Experimentelle Manipulation des Wasser- und Stoffhaushalt in einem Fichtenwald - das Dachprojekt im Solling. Forstarchiv, 64: 154-158.
  4. Bredemeier M., Blanck K., L amersdorf N., Wiedey G.A., 1995. Response of soil water chemistry to experimental "clean rain'' in the NITREX roof experiment at Solling, Germany. Forest Ecology and Management, 71: 31-44. Go to original source...
  5. Bredemeier M., Blanck K., Dohrenbusch A., Lamersdorf N., Meyer A.C., MURACH D., PARTH A., XU Y.J., 1998. The Solling roof project - site characteristics, experiments and results. Forest Ecology and Management, 101: 281-293. Go to original source...
  6. Corre M., Lamersdorf N., 2004. Reversal of nitrogen saturation after long-term deposition reduction: Impact on soil nitrogen cycling. Ecology, 85: 3090-3104. Go to original source...
  7. Corre M.D., Beese F.O., Brumme R., 2003. Soil nitrogen cycle in high nitrogen deposition forest: Changes under nitrogen saturation and liming. Ecological Applications, 13: 287-298. Go to original source...
  8. Diese N.B., Wright R.F., 1995. N leaching from European Forests in relation to N-deposition. Forest Ecology and Management, 71: 153-161. Go to original source...
  9. Dohrenbusch A., Jaehne S., Fritz H.W., 2002. Vitality and nutrient level of Norway spruce trees under changed environmental conditions. In: DOHRENBUSCH A., BARTSCH N. (eds), Forest Development - Succession, Environmental Stress and Forest Management - Case Studies. Berlin, Heidelberg, New York, Springer Verlag: 93-108.
  10. Egerton-Warburton L.M., Allen E.B., 2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 10: 484-496. Go to original source...
  11. Egmond van K., Bresser T., Bouwman L., 2002. The European nitrogen case. Ambio, 31: 72-78. Go to original source...
  12. Eilers G., Brumme R., Matzner E., 1992. Above ground N uptake from wet deposition by Norway spruce (Picea abies Karst.). Forest Ecology and Management, 51: 239-249. Go to original source...
  13. Emmett B.A., Kjonaas O.J., Gundersen P., Koopmans C., Tietema A., Sleep D., 1998. Natural abundance of 15N in forests across a nitrogen deposition gradient. Forest Ecology and Management, 101: 9-18. Go to original source...
  14. Freyer H.D., 1978. Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Julich, Germany. Tellus, 30: 83-92. Go to original source...
  15. Fry B., 1991. Stable isotope diagrams of freshwater food webs. Ecology, 72: 2293-2297. Go to original source...
  16. Galloway J.N., Cowling E.B., Seitzinger S.P., Socolow R.H., 2002. Reactive nitrogen: Too much of a good thing? Ambio, 31: 60-63. Go to original source... Go to PubMed...
  17. Garten C.T. Jr., 1992. Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. International Journal of Environmental Analytical Chemistry, 47: 33-45. Go to original source...
  18. Garten C.T. Jr., 1993. Variation in foliar 15N abundance and the availability of soil N on the Walker Branch watershed. Ecology, 74: 2098-2113. Go to original source...
  19. Garten C.T. Jr., Migroet H., 1994. Relationship between soil nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National Park. Canadian Journal of Forest Research, 24: 1636-1645. Go to original source...
  20. Garten C.T. Jr., Migroet H., 1995. Relationship between soil N dynamics and natural 15N abundance in plant foliage from the Great Smoky Mountains National Park. Journal of Forest Research, 24: 1636-1645. Go to original source...
  21. Gebauer G., Schulze E.D., 1991. Carbon and nitrogen isotope ratios in different compartments of a healthy and declining Picea abies forest in the Fichtel Gebirge, N.E. Bavaria. Oecologia, 87: 198-207. Go to original source... Go to PubMed...
  22. Gebauer G., Giesemann A., Schulze E.D., Jäger H.J., 1994. Isotope ratios and concentration of S and N in needles and soils of P. abies stands as influenced by atmospheric deposition of S and N compounds. Plant and Soil, 164: 267-281. Go to original source...
  23. Gordon J.C., Bormann B.T., Kiester R., 1992. The physiology and genetics of ecosystems: a new target, or "forestry contemplates an entangled bank". In: DEYOE D. et al. (eds), Proceedings 12th North American Forest Biology Workshop. Ontario, Ministry of Natural Resources, Sault Ste. Marie.
  24. Heaton T.H., 1986. Isotopic studies of N-pollution in the hydrosphere and atmosphere; a review. Chemical Geology, 59: 87-102. Go to original source...
  25. Högberg P., 1990. Forests losing large quantities of nitrogen have elevated 15N:14N ratios. Oecologia, 84: 229-231. Go to original source... Go to PubMed...
  26. Högberg P., 1997. 15N natural occurrence in soil plant systems. New Phytologist, 137: 179-203. Go to original source... Go to PubMed...
  27. Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C., Wallmark H., 1996. 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia, 108: 207-214. Go to original source... Go to PubMed...
  28. Hoering T., 1957. The isotopic composition of ammonia and the nitrate ion in rain. Geochimica et Cosmochimica Acta, 12: 97-102. Go to original source...
  29. Johannisson C., Högberg P., 1994. 15N abundance of soils and plants along an experimentally induced forest nitrogen supply gradient. Oecologia, 97: 322-325. Go to original source... Go to PubMed...
  30. Kendall C., 1998. Tracing nitrogen sources and cycling in catchments. In: KENDALL C., McDONNELL J. (eds), Isotope Tracers in Catchment Hydrology. Amsterdam, Elsevier Science B.V.: 519-576. Go to original source...
  31. Koopmann C.J., 1996. The impact of reduced N deposition on N-cycling in Dutch forest ecosystems. [Ph.D. Thesis.] Amsterdam, University of Amsterdam.
  32. Koopmann C.J., VAN DAM D., TIETEMA A., 1997. Natural 15N abundance in two N-saturated forest ecosystem. Oecologia, 111: 470-480. Go to original source... Go to PubMed...
  33. Lajtha K., Seely B., Valiela I., 1995. Retention and leaching losses of atmospherically derived nitrogen in the aggrading coastal watershed of waquoit Bay MA. Biogeochemistry, 28: 33-54. Go to original source...
  34. Lamersdorf N., Borken W., 2004. Clean rain promotes fine root growth and soil respiration in a Norway spruce forest. Global Change Biology, 10: 1-12. Go to original source...
  35. Lamersdorf N., Bredemeier M., Borken W., Xu Y.J., 1999. Das Entsauerungs- und Austrocknungsexperiment im Solling. AFZ/DerWald, 2: 55-57.
  36. Lilleskow E.A., Fahey T.J., Lovett G.M., 2001. Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 11: 397-410. Go to original source...
  37. Lilleskow E.A., Fahey T.J., Horton T.R., Lovett G.M., 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83: 104-115. Go to original source...
  38. Mariotti A., Garmon J.C., Hubert P., Kaiser P., Lettole R., Tardieux A., Tardieux P., 1981. Experimental determination of N-kinetic isotope fractionations: some determinations of N-kinetic isotope fractionation. Plant and Soil, 62: 413-430. Go to original source...
  39. Matson P., Lohse K.A., Hall S.J., 2002. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio, 31: 113-119. Go to original source... Go to PubMed...
  40. Meints V.W., Boone I.V., Kutz I.T., 1975. Natural 15N abundance in soil, leaves and grains as influenced by longterm addition of fertiliser N at several rates. Journal of Environmental Quality, 4: 486-490. Go to original source...
  41. Meiwes K.J., Meesenburg H., Bartens H., Rademacher P., Khanna P.K., 2001. Akkumulation von Auflagehumus im Solling, Mögliche Ursachen und Bedeutung für den Nährstoffkreislauf. Forst und Holz, 57: 428-433.
  42. Moore H., 1977. The isotopic composition of NH4, NO2 and NO3 in the atmosphere. Atmosphere and Environment, 11: 1239-1243. Go to original source...
  43. Murach D., 1984. Die Reaktion der Feinwurzeln von Fichten (Picea abies Karst.) auf zunehmende Bodenversauerung. Göttinger Bodenkundliche Berichte, 77: 1-126.
  44. Murach D., Parth A., 1999. Auswirkung von reduzierten Elementeinträgen und Trockenstress: Feinwurzelwachstum von Fichten beim Dach-Projekt im Solling. AFZ/Der Wald, 2: 58-59.
  45. Murach D., Ilse L., Klaproth F., Strunk P., Wiedemann H., 1993. Zum Einsatz verschiedener Wurzelbeobachtungsmethoden im Dach-Experiment im Solling. Forstarchiv, 64: 185-188.
  46. Nadelhoffer K.J., Fry B., 1988. Controls on natural nitrogen-15 and carbon-13 abundance in forest soil organic matter. Soil Science Society of America Proceedings, 52: 1633-1640. Go to original source...
  47. Nadelhoffer K.J., Fry B., 1994. N-isotope studies in forests. In: LAJTHA K., MICHENER R.H. (eds), Stable Isotopes in Ecology and Environmental Sciences. Oxford, Blackwell: 22-62.
  48. Nadelhoffer K., Downs M., Fry B., Magill A., Aber J., 1999. Controls on N retention and exports in a forested watershed. Environmental Monitoring and Assessment, 55: 187-210. Go to original source...
  49. Nihlgard B., 1985. The NH4 hypothesis- an additional explanation to the forest dieback in Europe. Ambio, 14: 2-8.
  50. Papen H., Gessler A., Zumbusch E., Rennenberg H., 2002. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Current Microbiology, 44: 56-60. Go to original source... Go to PubMed...
  51. Pardo L.H., Templer P.H., Goodale C.L., Duke S., Groffman P.M., Adams M.B., Boeckx P., Boggs J., Campbell J., Colman B., Compton J., Emmett B., Gundersen P., Kjonaas J., Lovett G., Mack M., Magill A., Mabila M., Mitchell M.J., McGee G., McNulty S., Nadelhoffer K., Ollinger S., Ross D., Rueth H., Rustad L., Schaberg P., Schiff S., Schleppi P., Spoelstra J., Wessel W., 2006. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry, 80: 143-171. Go to original source...
  52. Pate J.S., Stewart G.R., Unkoviej M., 1993. 15N abundance of plant and soil components of a Banksia woodland ecosystem in relation to NO3 utilisation, life-form, mycorrhizal status and N2 fixing abilities of component species. Plant, Cell and Environment, 16: 365-373. Go to original source...
  53. Puhe J., Ulrich B., 2002. Global Climate Change and Human Impacts on Forest Ecosystems - Postglacial Development, Present Situation, and Future Trends in Central Europe. Ecological Studies. Berlin, Heidelberg, New York, Springer Verlag: 592.
  54. Sah S.P., Brumme R., 2003. Natural 15N abundance in two nitrogen saturated forest ecosystems at Solling, Germany. Journal of Forest Science, 49: 515-522. Go to original source...
  55. Sah S.P., Ilvesniemi H., 2006. Effects of clear cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species. Isotopes in Environmental and Health Studies, 42: 367-377. Go to original source... Go to PubMed...
  56. Shearer G., Kohl D.H., 1993. Natural abundance of 15 N: Fractional contribution of two sources to a common sink and use of isotope discrimination. In: KNOWLES R., BLACKBURN T.H. (eds), Nitrogen Isotope Techniques. San Diego, Academic Press: 89-125. Go to original source...
  57. Shearer G., Duffy J., Kohl D.H., Commoner B., 1974. A steady state model of isotopic fractionation accompanying nitrogen transformations in soil. Soil Science Society of America Proceedings, 138: 315-322. Go to original source...
  58. Schulze E.D., Oren R., Zimmerman R., 1987. Die Wirkung von Immissionen auf 30 jährige Fichten in mittleren Höhenlagen des Fichtelgebirges auf phyllit. Allgemeine Forstzeitschrift, 27-29: 725-730.
  59. Tietema A., Boxman A.W., Bredemeier M., Emmett B.A., Moldan F., Gundersen P., Schleppi P., Wright R.F., 1998. Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: a summary of results. Environmental Pollution, 102: 433-437. Go to original source...
  60. Ulrich B., 1994. Process Hierarchy in Forest Ecosystems - An Integrating Ecosystem Theory. In: HUETTERMANN A., GODBOLD D. (eds), Effects of Acid Rain on Forest Processes. New York, Wiley-Liss: 353-397.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.