J. For. Sci., 2007, 53(4):139-148 | DOI: 10.17221/2171-JFS

About the benefits of poststratification in forest inventories

J. Saborowski1, J. Cancino2
1 Faculty of Forest Sciences and Forest Ecology, Georg-August University, Göttingen, Germany
2 Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile

A large virtual population is created based on the GIS data base of a forest district and inventory data. It serves as a population where large scale inventories with systematic and simple random poststratified estimators can be simulated and the gains in precision studied. Despite their selfweighting property, systematic samples combined with poststratification can still be clearly more efficient than unstratified systematic samples, the gain in precision being close to that resulting from poststratified over simple random samples. The poststratified variance estimator for the conditional variance given the within strata sample sizes served as a satisfying estimator in the case of systematic sampling. The differences between conditional and unconditional variance were negligible for all sample sizes analyzed.

Keywords: poststratification; systematic sampling; simple random sampling; conditional variance

Published: April 30, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Saborowski J, Cancino J. About the benefits of poststratification in forest inventories. J. For. Sci. 2007;53(4):139-148. doi: 10.17221/2171-JFS.
Download citation

References

  1. BELLHOUSE D.R., RAO J.N.K., 1975. Systematic sampling in the presence of a trend. Biometrika, 62: 694-697. Go to original source...
  2. BÖCKMANN T., SABOROWSKI J., DAHM S., NAGEL J., SPELLMANN H., 1998. A new conception for forest inventory in lower saxony. Forst und Holz, 53: 219-226. (in German)
  3. COCHRAN W.G., 1977. Sampling Techniques. New York, Wiley: 428.
  4. GHOSH D., VOGT A., 1988. Sample configuration and conditional variance in poststratification. American Statistical Association Proceedings, Section on Survey Research Methods: 289-292.
  5. GHOSH D., VOGT A., 1993. Some theorems relating poststratification and sample configuration. American Statistical Association Proceedings, Section on Survey Research Methods: 341-345.
  6. HOLT D., SMITH T.M.F., 1979. Post stratification. Journal of the Royal Statistical Society A, 142: 33-46. Go to original source...
  7. LITTLE R.J.A., 1993. Post-stratification. A modeler's perspective. Journal of American Statistical Association, 88: 1001-1012. Go to original source...
  8. MADOW W.G, MADOW L.H., 1944. On the theory of systematic sampling. Annals of Mathematical Statistics, 15: 1-24. Go to original source...
  9. MADOW L.H., 1946. Systematic sampling and its relation to other sampling designs. Journal of American Statistical Association, 41: 204-217. Go to original source... Go to PubMed...
  10. MATÉRN B., 1960. Spatial variation. Meddelanden från statens Skogsforskningsinstitut, 49: 1-144.
  11. RAO J.N.K., 1988. Variance estimation in sample surveys. In: KRISHNAIAH P.R., RAO C.E. (eds.), Handbook of Statistics, Vol. 6 (Sampling). Amsterdam, Elsevier: 427-444. Go to original source...
  12. RAO J.N.K., YUNG W., HIDIROGLOU M.A., 2002. Estimating equations for the analysis of survey data using poststratification information. Sankhya, 64 A: 364-378.
  13. SMITH T.M.F., 1991. Post-stratification. The Statistician, 40: 315-323. Go to original source...
  14. STEHMAN S.V., SOHL T.L., LOVELAND T.R., 2003. Statistical sampling to characterize recent United States land-cover change. Remote Sensing of Environment, 86: 517-529. Go to original source...
  15. THOMPSON S.K., 1992. Sampling. New York, Wiley: 1-343.
  16. VALLIANT R., 1993. Poststratification and conditional variance estimation. Journal of American Statistical Association, 88: 89-96. Go to original source...
  17. WILLIAMS W.H., 1962. The variance of an estimator with poststratified weighting. Journal of American Statistical Association, 57: 622-627. Go to original source...
  18. WOLTER K.M., 1985. Introduction to Variance Estimation. New York, Springer: 1-427. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.