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Poststratification is well known as a means of 
increasing the precision of estimates in unstratified 
sampling by incorporating additional information 
about strata weights in the final estimator. In gen-
eral, stratification leads to more precise estima-
tions than simple random sampling when relatively 
homogenous strata can be configured with large 
variability between strata. Poststratification involves 
assignment of units after selection of the sample. 
Compared to a priori stratification, the variance of 
the poststratification estimator is increased by the 
randomness of the sample size in each stratum.

If poststratification is combined with systematic 
sampling, the gain in precision can be suspected to 
be small when the spatial distribution of strata leads 
to a nearly proportional allocation of sampling units 
to the strata, because in that case systematic sam-
pling is approximately self-weighting. Proportional 
allocation is often at least approximately achieved 
by spatial systematic sampling in forest inventories, 
even if the strata are hidden during sample selec-
tion.

Finally, the poststratification variance estimator 
might be a nearly unbiased estimator for the variance 
of estimates based on systematic poststratified sam-

pling because appropriate stratification can remark-
ably reduce trends in the underlying spatial data.

Systematic sampling

The usual one-dimensional systematic sampling 
design divides the N units of the population in k ≥ 2  
clusters or classes S1,..., Sk, where Si comprises the 
units i, i+k, i+2k,…, i+jk (i+jk ≤ N), and then selects 
one of these Si at random. Selecting so the first unit 
as 1 of k yields an unbiased estimate of the popu-
lation mean when N = n × k, but that estimate is 
biased when N ≠ n × k. The bias arises from the fact 
that some of the k systematic samples have sample 
size n and others sample size n+1. A variant of the 
method, circular systematic sampling, also called 
Lahiri’s method, provides both a constant sample 
size and an unbiased sample mean (Bellhouse, Rao 
1975; Cochran 1977), but destroys the systematic 
structure of the sample by combining units from two 
different clusters. According to Cochran (1977) the 
implications of those varying sample sizes in case  
N ≠ n × k can be assumed negligible if n exceeds 
50 and are unlikely to be relevant even when n is 
small.
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In general, n can not be arbitrarily fixed in advance. 
If N = n × k + c (c ≥ 0) and c < k, then there are c 
samples of size n+1 and k-c samples of size n. When 
2k > c > k, c– k systematic samples have n+2 units 
and the remaining have n+1 units. In more extreme 
cases, the sample size finally obtained can over- or 
underride the desired one remarkably. For example, 
with N = 102 and n = 30 desired N / n = 102 / 30 = 3.4  
is obtained and one can choose among k = 3 or k = 4  
systematic samples. In the first case c = 12 and  
3 samples of size n = 34 are obtained, in the second 
case (c = 2) two systematic samples of size 25 and 
two of size 26 exist.

In two dimensions, a natural extension of one-
dimensional systematic sampling is sampling on a 
regular grid. Most frequently, square grids are used 
in practice, although triangular grids may often be 
superior (Cochran 1977; Matérn 1960). Here, 
variability of sample size is usually even greater 
than in the one-dimensional case. The different 
systematic samples may vary by much more than 
one unit in size. For example in a squared popula-
tion with N = 102 × 102 = 10,404 units, drawing 
each tenth unit in both directions results in 100 dif- 
ferent systematic samples of varying size, that is, 
64 samples of size 100, 32 of size 110, and 4 of size 
121. In sampling a nonrectangular area, variability 
of the sample size will further be increased depend-
ing on the irregularity of the particular shape of the 
area. With poststratification there is an additional 
variability of sample sizes within strata (Valliant 
1993).

A well-known drawback of systematic sampling 
is the absence of an unbiased variance estimator. 
Thus, practitioners make use of the simple random 
sampling variance estimator or one of the alterna-
tives offered in the literature (e.g. Wolter 1985). The 
simple random sampling variance estimator often 
overestimates the true variance because it does not 
consider the self-weighting property of systematic 
sampling in case of hidden strata or spatial trends. 
Then systematic sampling has similar properties 
as stratified sampling with proportional allocation 
of samples and poststratified variance estimators, 
might be less biased.

With simple random sampling and appropriately 
large population and sample sizes, the sample means 
can be expected to be approximately normally dis-
tributed. This does not hold for systematic sampling, 
where the number of possible samples decreases with 
increasing sample size (Madow, Madow 1944). 
Whereas with simple random sampling the variance 
of the sample mean monotonically decreases with 
increasing sample size, this is not true for systematic 

sampling. Instead, there is a decreasing trend with 
erratic fluctuation (Madow 1946).

Poststratification

Poststratification means assigning sampling units 
to strata after observation of the sample, i.e. stratifi-
cation is imposed at the analysis stage rather than at 
the design stage (Stehman et al. 2003). Therefore, 
sample sizes within strata can not be fixed in ad-
vance but must be assumed random depending on 
the samples actually selected. This is an additional 
source of variation. 

Poststratification is usually applied when addi-
tional information about strata sizes is available. In 
the ideal case this additional information comprises 
the true strata weights, which might be known from 
previous work or other external data sources (Coch- 
ran 1977; Smith 1991; Valliant 1993). As with  
a priori stratification, poststratification can be based 
on one or more classification variables defining the 
strata.

With large sample sizes and simple random sam-
pling, and even more with systematic sampling, 
poststratification can be expected to correspond 
approximately to stratified sampling with propor-
tional allocation. Usually, it is discussed as a method 
supposed to increase precision (Cochran 1977; 
Valliant 1993; Stehman et al. 2003), because it 
reduces selection biases by reweighting after sam-
ple selection (Smith 1991; Little 1993; Rao et al. 
2002). Since systematic sampling might be expected 
to come closer to proportional allocation than sim-
ple random sampling, one might conjecture that the 
relative increase in precision by poststratification 
will be larger with simple random than with system-
atic sampling.

Ghosh and Vogt (1993) affirmed that the condi-
tional variance, where the condition is a given sample 
allocation, is the proper instrument for comparing 
the poststratification mean with the regular simple 
random or systematic sampling mean as estima-
tors of the true population mean. They observed 
that the poststratified mean is often superior to the 
regular mean when the conditional variance or the 
conditional mean square error is used for compar-
ing both estimators (Ghosh, Vogt 1988). Holt and 
Smith (1979) affirmed that, in theory, neither the 
post stratification estimator nor the sample mean 
is uniformly best in all situations but empirical in-
vestigations indicate that post stratification offers 
protection against unfavourable sample configura-
tions and should be viewed as a robust technique. As 
each stratum mean is weighted by the relative size 
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of that stratum in the population, the post stratified 
estimator automatically corrects for any badly bal-
anced sample.

Variances and variance estimation

The unconditional variance of the poststratified 
mean
              L
–y  st.post = ΣWh –y  h

         h=1

with –y  h the sample mean in stratum h and samples 
of size n randomly selected in a population with L 
strata is approximately
                        

 1 
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where Wh and S2
h    are, respectively, the relative size 

and the variance of stratum h (Cochran,  1977, 
5A.42). The first term in equation (1) is the vari-
ance of the estimator –y  st of the population mean in 
(pre)stratified random sampling with proportional 
allocation
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and the second represents the increase in vari-
ance that arises from the randomness of the nh 
(Coch-ran 1977, p. 134 f.). It is evident that this 
term approximates zero when n→∞. Furthermore, 
if the S2

h   do not differ greatly, the increase is about  
(L – 1)/n times the variance for proportional alloca-
tion, ignoring the finite population correction. With 
n >> L the increase due to the second term in equa-
tion (1) is small compared with equation (2).

Because of the randomness of the within strata 
sample sizes, the variance formulas for prestratified 
samples may be regarded as inappropriate (Wil-
liams 1962). However, although the variance of a 
poststratified estimator can be computed uncondi-
tionally (i.e., across all possible realizations of within 
strata sample sizes), inferences made conditionally 
on the achieved sample configuration are desirable 
(Valliant 1993). The conditional variance of the 
poststratified mean, that is the variance given the 
within strata sample sizes n1, ..., nL is
                                  L
σ2–y     st.post.cond

= Varpost(ΣWh –y  h |n1, ..., nL) =
                                h=1

    L      W2
h     
                  nh= Σ––––– s2
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nh                 Nh

The respective estimators of (1), (2) and (3) are obtain- 
ed by simply substituting the estimator s2

h   for S2
h  , e.g.

                    L  W2
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Instead of (1), Thompson (1992) presented an 
alternative approximation of the variance of the 
poststratified mean, namely
 
1

         
 n     L              1    N –n    L– (1 – –– ) ΣWhS2

h   + –– (––––– )Σ(1 –Wh)S2
h   n

         N   h=1            n
2 

  N – 1  h=1

and he uses s2–y    st.post.cond
 as the according variance es-

timator, which evidently estimates (only) the condi-
tional variance given the sample allocation n1, ..., nL,  
what is but completely satisfactory because one is 
usually interested in the precision of an estimate 
based on the sample allocation actually obtained 
(Rao 1988).

With k systematic samples the ith of which yields a 
simple mean –y   (i) and a poststratified mean –y  st.post (i),  
the true variances of those estimators are by defini-
tion
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Finally, the variance of the sample mean –y    in simple 
random sampling is denoted by
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and, based on k simple random samples, we use 
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for the simulated variances of simple and poststrati-
fied means. The ~ is used to symbolize the variances 
approximated by simulation; variances (4) and (5) are 
true variances because all k systematic samples are 
considered. In the simulation study equations (6) and 
(7) should give almost equal results.

Data base and virtual forest landscape

In order to carry out a large scale simulation study, 
it was intended to create an artificial population as 
close as possible to a real forest landscape. There-
fore, volume data and actual forest coverage from a 
geographical information system of the Solling area 
(Lower Saxony, Germany) were used as the data 
base. Volume data stem from a forest district inven-
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tory based on concentric circular plots where tree 
species and diameter in breast height of all sample 
trees are available as well as some heights required 
for calculating volumes (Böckmann et al. 1998). In 
total, data from 5,680 sample plots were incorpo-
rated in the creation of a virtual population.

The virtual population (Fig. 1) is represented by a 
mosaic of 212,386 squares (40m by 40m side length) 
each of which was assigned to one of 7 strata (Ta-
ble 1) according to the stratum of the forest stand 
covering the centre of the square. Four strata were 
dominated by spruce (Picea abies [L.] Karst.) and 
three strata by beech (Fagus sylvatica L.).

Also, each inventory sample plot was assigned 
to one of the strata and a three-parameter Weibull 
function fitted to the volume per ha distribution of 
all sample plots of a stratum (Table 2). The Weibull 
parameters were estimated by the Maximum Likeli-

hood method, with initial parameter values α = 0.95 
× Vmin, β = V0.63 – α, and γ = β/Sv, where Vmin is the 
minimum volume, V0.63 represents the 63th percen-
tile of volumes, and Sv is the standard deviation of 
the volume data. The resulting volume distributions 
range from negative exponential to left-skewed 
shapes (Fig. 1). From those volume distributions, the 
volume per ha for each square unit of the population 
was randomly selected depending on the stratum 
of the square unit. That implies in particular that 
trends, periodic variation or autocorrelation within 
strata are unlikely.

Simulation

Systematic samples were now chosen on square 
grids of 20 different grid widths representing sam-
pling intensities from 0.047% to 1.0%. Those widths 
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Fig. 1. Spatial coverage of the strata in Solling, relative volume frequencies and fitted Weibull 
probability density function of each stratum. 

306

Fig. 1. Spatial coverage of the strata in the Solling, relative volume frequencies and fitted Weibull probability density function 
of each stratum
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were realized by selecting each 10th square in both 
directions for about 1% sampling intensity and each 
46th square for 0.047%. Thus the number of system-
atic samples obtained varyed between k = 100 for the 
smallest and k = 2,116 for the largest grid width, sizes 
sufficiently large to obtain nh > 1 in each stratum. 
For each of these intensities, the total number of 
different systematic samples were drawn, the values 
of the corresponding sampling units identified, and 
the simple (–y  ) and stratified (–y  st.post) means and the 
variance estimators for each sample as well as the 

true variances (4) and (5) calculated. Additionally, 
random samples (without replacement) of sample 
sizes equal to the mean sample sizes of the systematic 
samples were drawn and the corresponding –y  , –y  st.post, 
the variance estimators as well as the “true” variances 
(7) and (8) calculated. All means and variances were 
averaged over the k systematic or random samples. 

Sample sizes n vary among the k systematic sam-
ples and are constant among the k random samples. 
However, the within stratum sample sizes vary for 
both systematic and random sampling.

Table 1. Characteristics of the 7 strata for Solling data

Age class (years) Stratum Nh Wh

Coniferous trees dominate

< 40 1 26,241 0.124

41–80 2 30,801 0.145

81–120 3 24,554 0.116

> 120 4 39,002 0.184

Broadleaf trees dominate

< 40 5 30,690 0.145

41–80 6 36,498 0.172

> 80 7 24,600 0.116

N = 212,386

Table 2. Characteristic values of volume and estimated parameters of the three-parameter Weibull function per stratum

Stratum Number of 
data points

Volume (m3/ha) Parameters of the Weibull function
Minimum Maximum µ σ α β γ

1 405 0.590 569.441   93.449   97.185 0.589938  89.195977 0.913904
2 372 4.228 822.673 225.129 119.641 4.228146 241.675473 1.764021
3 387 1.259 899.537 317.430 146.725 1.258811 343.767969 2.017091
4 894 0.661 1,085.414 314.517 165.170 0.661273 346.609165 1.831620
5 937 0.417 947.915 185.710 117.432 0.417108 201.749274 1.476572
6 1,658 0.923 1,037.621 348.028 160.364 0.922846 385.693802 2.159353
7 1,027 3.102 1,181.949 491.999 170.687 3.101742 535.959991 3.005017
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Fig. 2. Histogram of the poststratified sample mean .st posty  obtained from the corresponding k

different systematic samples. Here n is the arithmetic mean of the sample size of the k
samples in the population. 
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Fig. 3. Standard error of the poststratified mean for systematic and random sampling, the latter 
compared with the rooted mean variance estimate of the k replicated simple random 
samples and y  according to (7) 
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Fig. 2. Histogram of the poststratified sample mean –y  st.post  obtained from the corresponding k different systematic samples. 
Here n is the arithmetic mean of the sample size of the k samples in the population

n = 100 n = 402 n = 1,755
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RESULTS AND DISCUSSION

In theory, in a population with mean µ and va-
riance σ2, with simple random sampling without 
replacement and with large sample size, the distri-
bution of the sample mean can be approximated 
by a normal distribution with mean µ and variance  
(1 – n/N) × σ2/n, independently of the original dis-
tribution of the variable of interest. Here, although 

the estimate of the true mean is unbiased and the 
variance of the mean decreases (Tables 3 and 4) with 
increasing n, its histogram approximates the normal 
probability density function (pdf ) better for smaller 
than for the larger sample sizes (Fig. 2). This is due to 
the decreasing number k of systematic samples with 
increasing sample size n (k = N/n).

As expected (see chapter 2), the simulation confirmed 
the more or less erratic decrease of σ–y     st.post.sys (Fig. 3a) 

Table 3. Characteristic values of systematic –y  st.post 

Mean 
n

Number  
of systematic samples

Volume (m3/ha)
Minimum Maximum mean –y  st.post σst.post.sys

100 2,116 223.631 319.384 275.394 15.300
147 1,444 239.977 314.349 275.431 12.161
195 1,089 238.964 318.364 275.487 11.333
252 841 245.358 304.173 275.479 9.523
291 729 252.316 302.744 275.428 8.828
340 625 254.066 302.227 275.417 8.143
402 529 251.219 300.115 275.457 7.665
439 484 255.799 298.070 275.441 7.419
482 441 256.247 292.334 275.382 6.593
531 400 258.862 294.995 275.477 6.395
588 361 259.578 293.504 275.407 5.889
656 324 260.168 293.516 275.448 6.081
735 289 259.209 288.234 275.459 5.607
830 256 262.688 290.079 275.450 5.103
944 225 262.346 287.911 275.435 4.796

1,084 196 263.943 288.117 275.466 4.314
1,257 169 266.995 284.735 275.462 4.049
1,475 144 265.965 284.841 275.447 3.976
1,755 121 265.872 285.972 275.433 3.670
2,124 100 267.151 284.702 275.424 3.004
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Fig. 2. Histogram of the poststratified sample mean .st posty  obtained from the corresponding k

different systematic samples. Here n is the arithmetic mean of the sample size of the k
samples in the population. 
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Fig. 3. Standard error of the poststratified mean for systematic and random sampling, the latter 
compared with the rooted mean variance estimate of the k replicated simple random 
samples and y  according to (7) 
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Fig. 3. Standard error of the poststratified mean for systematic and random sampling, the latter compared with the rooted mean 
variance estimate of the k replicated simple random samples and ~σ  –y      according to (7)

RandomSystematic

Sample size (n) Sample size (n)
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with increasing sample size. The erratic behavior is 
more expressed for n > k, here beyond sample sizes 
of about 460, that is with sample sizes where c > k  
might occur and where the variability of the sample 
size n decreases slower beyond that point (Fig. 4). 
Similar erratic oscillations of ~σ  –y  st.post

 occur with  
random sampling, and the rooted mean variance 
estimate of the k replicated simple random samples 
and  ~σ  –y     

according to (7) exhibit no remarkable dif-
ferences (Fig. 3b), although both are larger than  
~σ  –y  st.post

.

Fig. 5a compares the square root of the means of 
the estimates s2

y st.post.uncond
  for the conditional vari-

ance (1), the means of s2
y  st.post.cond as estimates for the  

unconditional variance (2) and the means of the 
random sample variance estimates s2

y   with the true 
variance σ2

y  st.post.sys within the range of the analyzed 
sample sizes. Obviously, s2

y  overestimates the true  
variance by far, and the conditional and uncondi-
tional variance estimators, on an average, exhibit 
no remarkable differences. Thus, the component of 
variability associated to the variability of the sample 

Table 4. Characteristic values of random –y  st.post  

Sample size  
n

Number  
of random samples

Volume (m3/ha)
Minimum Maximum mean –y  st.post 

-σ  st.post

100 2,116 221.263 339.764 275.452 15.505
147 1,444 237.849 315.398 275.122 13.060
195 1,089 239.759 311.636 274.785 10.768
252 841 246.214 307.115 275.199 9.615
291 729 249.701 299.559 274.906 8.587
340 625 251.328 303.244 275.899 8.288
402 529 250.967 299.248 274.377 7.504
439 484 256.562 292.695 275.097 7.067
482 441 259.611 294.242 275.809 6.560
531 400 257.124 296.154 275.342 6.834
588 361 258.846 292.583 275.493 6.279
656 324 256.534 292.863 275.233 6.090
735 289 259.901 293.623 275.352 5.243
830 256 258.429 290.645 275.150 5.318
944 225 262.949 287.922 275.372 4.644

1,084 196 261.287 292.002 275.442 4.547
1,257 169 264.998 287.275 275.283 4.270
1,475 144 264.997 287.718 275.699 4.237
1,755 121 266.267 284.233 275.063 3.294
2,124 100 267.991 284.271 275.344 3.761

Fig. 4. Sample sizes of the systematic samples and related c/k values, standard deviations (black diamonds), and coefficients of 
variation (grey diamonds)

18

Fig. 4. Sample sizes of the systematic samples and related c/k values, standard deviations (black 
diamonds), and coefficients of variation (grey diamonds) 

315
316
317
318
319

320
321

Fig. 5. 100+bias(%) of variance estimators for the true standard deviation of the poststratified 
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Fig. 4. Sample sizes of the systematic samples and related c/k values, standard deviations (black 
diamonds), and coefficients of variation (grey diamonds) 
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Fig. 5. 100+bias(%) of variance estimators for the true standard deviation of the poststratified 
mean in systematic and random sampling. 
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Fig. 6. Relative efficiency of poststratification in systematic and random sampling; real strata. 
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Fig. 6. Relative efficiency of poststratification in systematic and random sampling; real strata. 
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Fig. 5. 100+bias(%) of variance estimators for the true standard deviation of the poststratified mean in systematic and random 
sampling

Fig. 7. Artificial strata with larger connected subareas

Fig. 6. Relative efficiency of poststratification in systematic and random sampling, real strata

size is, as it was expected, practically zero. Biases 
are erratic, varying predominantly within a range 
of ± 5% of the true standard error of the systematic 
samples. Similar results can be observed with ran-
dom sampling (Fig. 5b) where the same variance 
estimators are compared with the “true” variance  
σyst.post

 of the poststratified mean.
Taking the true standard deviation σ ysys

  of the un-
stratified mean of a systematic sample as a reference, 
the standard deviation σ yst.post.sys

  of the poststratified 
mean under systematic sampling was about 16% 
smaller on the average (Fig. 6a). A similar gain in 
precision can be achieved by (pre)stratified sampling 
with proportional allocation in the underlying vir-
tual forest landscape. Beyond sample sizes of about 
500, that is of samples where n is larger than k, the 
variance ratios are less stable with gains in precision 
between 6 % and 25 %.

With random sampling (Fig. 6b), gains in precision 
are only slightly larger. Probably, the little size and 
spatial distribution of connected areas of the diffe-

Sample size (n)Sample size (n)

Sample size (n)Sample size (n)

RandomSystematic

RandomSystematic
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rent strata leads to an allocation of the samples which 
is only a little closer to proportionality for systematic 
sampling than for random sampling. In that case 
reweighting by poststratification must have a similar 
effect for both sampling techniques.

In order to analyze the influence of the spatial 
structure of strata on the efficiency of poststratifi-
cation, an artificial stratification was set up (Fig. 7). 
Here, the strata comprise larger connected subareas 
as for the real spatial distribution of strata (Fig. 1). 
The allocation of samples under systematic samples 
will be closer to proportionality in that case and 
should result in a lower relative efficiency of the 
poststratified mean (systematic sampling). This 
conjecture could be stated by the results presented 
in Fig. 8. Precision increased only by about 4%, 
instead of 16% before, for systematic sampling. For 
random sampling the increase of precision by post-
stratification remained at the same level as for the 
real stratification.

CONCLUSION

The case study presented reveals that mean esti-
mators under systematic sampling can remarkably 
be improved in precision by poststratification when 
strata comprise a large number of small connected 
subareas. The larger connected subareas are the 
less is the gain in precision. The conditional as 
well as the unconditional variance estimator for 
poststratified sampling were only slightly biased  
(< 5%) with varying signs for different sample sizes, 
particularly in case of systematic random sampling. 
They can be expected practically identical in large 
scale forest inventories; here we studied sample 
sizes above 100.

For random sampling, the spatial structure of 
strata had no influence on the efficiency of post-
stratification compared to simple random sample 
means.

With the underlying population, stratified ran-
dom sampling with proportional allocation and 
poststratified systematic sampling achieved similar 
precision, but this might be different when within 
strata variances vary more among strata than in this 
case study.
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O přínosech poststratifikace v lesnické inventarizaci

Abstrakt: Na základě GIS databáze a údajů lesnické inventarizace pro určitý úsek lesa byl vytvořen rozsáhlý 
virtuální základní soubor. Tento soubor byl využit pro simulaci velkoplošné inventarizace s odhady parametrů zís-
kanými pomocí poststratifikace systematického a jednoduchého náhodného výběru a pro studium zvýšení přesnosti 
odhadu. Přes systematický výběr kombinovaný s poststratifikací se jeví stále ještě efektivnější než nestratifikovaný 
systematický výběr, zvýšení přesnosti se blíží výsledkům získaným z jednoduchého náhodného výběru s poststrati-
fikací. Poststratifikovaný odhad rozptylu pro podmíněný rozptyl stanovený na základě velikosti výběrů jednotlivých 
oblastí (strat) slouží jako uspokojivý odhad v případě systematického výběru. Rozdíly mezi nepodmíněným a pod-
míněným rozptylem byly shledány pro všechny analyzované velikosti výběru jako zanedbatelné.

Klíčová slova: poststratifikace; systematický výběr; jednoduchý náhodný výběr; podmíněný rozptyl


