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ABSTRACT: A large virtual population is created based on the GIS data base of a forest district and inventory data. It
serves as a population where large scale inventories with systematic and simple random poststratified estimators can be

simulated and the gains in precision studied. Despite their selfweighting property, systematic samples combined with

poststratification can still be clearly more efficient than unstratified systematic samples, the gain in precision being close

to that resulting from poststratified over simple random samples. The poststratified variance estimator for the condi-

tional variance given the within strata sample sizes served as a satisfying estimator in the case of systematic sampling.

The differences between conditional and unconditional variance were negligible for all sample sizes analyzed.
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Poststratification is well known as a means of
increasing the precision of estimates in unstratified
sampling by incorporating additional information
about strata weights in the final estimator. In gen-
eral, stratification leads to more precise estima-
tions than simple random sampling when relatively
homogenous strata can be configured with large
variability between strata. Poststratification involves
assignment of units after selection of the sample.
Compared to a priori stratification, the variance of
the poststratification estimator is increased by the
randomness of the sample size in each stratum.

If poststratification is combined with systematic
sampling, the gain in precision can be suspected to
be small when the spatial distribution of strata leads
to a nearly proportional allocation of sampling units
to the strata, because in that case systematic sam-
pling is approximately self-weighting. Proportional
allocation is often at least approximately achieved
by spatial systematic sampling in forest inventories,
even if the strata are hidden during sample selec-
tion.

Finally, the poststratification variance estimator
might be a nearly unbiased estimator for the variance
of estimates based on systematic poststratified sam-
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pling because appropriate stratification can remark-
ably reduce trends in the underlying spatial data.

Systematic sampling

The usual one-dimensional systematic sampling
design divides the N units of the population in k > 2
clusters or classes S,,..., S,, where §; comprises the
units i, i+k, i+2k,..., i+jk (i+jk < N), and then selects
one of these S, at random. Selecting so the first unit
as 1 of k yields an unbiased estimate of the popu-
lation mean when N = n x k, but that estimate is
biased when N = n x k. The bias arises from the fact
that some of the k systematic samples have sample
size n and others sample size n+1. A variant of the
method, circular systematic sampling, also called
Lahiri’s method, provides both a constant sample
size and an unbiased sample mean (BELLHOUSE, RAO
1975; CocHRAN 1977), but destroys the systematic
structure of the sample by combining units from two
different clusters. According to COCHRAN (1977) the
implications of those varying sample sizes in case
N = n x k can be assumed negligible if n exceeds
50 and are unlikely to be relevant even when # is
small.
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In general, # can not be arbitrarily fixed in advance.
If N=unx k+ c(c>0)and ¢ < k, then there are ¢
samples of size n+1 and k-c samples of size n. When
2k > ¢ > k, c— k systematic samples have n+2 units
and the remaining have #+1 units. In more extreme
cases, the sample size finally obtained can over- or
underride the desired one remarkably. For example,
with N=102and n =30 desired N/n=102/30=3.4
is obtained and one can choose among k = 3 or k = 4
systematic samples. In the first case ¢ = 12 and
3 samples of size n = 34 are obtained, in the second
case (c = 2) two systematic samples of size 25 and
two of size 26 exist.

In two dimensions, a natural extension of one-
dimensional systematic sampling is sampling on a
regular grid. Most frequently, square grids are used
in practice, although triangular grids may often be
superior (COCHRAN 1977; MATERN 1960). Here,
variability of sample size is usually even greater
than in the one-dimensional case. The different
systematic samples may vary by much more than
one unit in size. For example in a squared popula-
tion with N = 102 x 102 = 10,404 units, drawing
each tenth unit in both directions results in 100 dif-
ferent systematic samples of varying size, that is,
64 samples of size 100, 32 of size 110, and 4 of size
121. In sampling a nonrectangular area, variability
of the sample size will further be increased depend-
ing on the irregularity of the particular shape of the
area. With poststratification there is an additional
variability of sample sizes within strata (VALLIANT
1993).

A well-known drawback of systematic sampling
is the absence of an unbiased variance estimator.
Thus, practitioners make use of the simple random
sampling variance estimator or one of the alterna-
tives offered in the literature (e.g. WOLTER 1985). The
simple random sampling variance estimator often
overestimates the true variance because it does not
consider the self-weighting property of systematic
sampling in case of hidden strata or spatial trends.
Then systematic sampling has similar properties
as stratified sampling with proportional allocation
of samples and poststratified variance estimators,
might be less biased.

With simple random sampling and appropriately
large population and sample sizes, the sample means
can be expected to be approximately normally dis-
tributed. This does not hold for systematic sampling,
where the number of possible samples decreases with
increasing sample size (MADOW, MADOW 1944).
Whereas with simple random sampling the variance
of the sample mean monotonically decreases with
increasing sample size, this is not true for systematic
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sampling. Instead, there is a decreasing trend with
erratic fluctuation (MADOW 1946).

Poststratification

Poststratification means assigning sampling units
to strata after observation of the sample, i.e. stratifi-
cation is imposed at the analysis stage rather than at
the design stage (STEHMAN et al. 2003). Therefore,
sample sizes within strata can not be fixed in ad-
vance but must be assumed random depending on
the samples actually selected. This is an additional
source of variation.

Poststratification is usually applied when addi-
tional information about strata sizes is available. In
the ideal case this additional information comprises
the true strata weights, which might be known from
previous work or other external data sources (CocH-
RAN 1977; SMITH 1991; VALLIANT 1993). As with
a priori stratification, poststratification can be based
on one or more classification variables defining the
strata.

With large sample sizes and simple random sam-
pling, and even more with systematic sampling,
poststratification can be expected to correspond
approximately to stratified sampling with propor-
tional allocation. Usually, it is discussed as a method
supposed to increase precision (COCHRAN 1977;
VALLIANT 1993; STEHMAN et al. 2003), because it
reduces selection biases by reweighting after sam-
ple selection (SM1TH 1991; LITTLE 1993; RAO et al.
2002). Since systematic sampling might be expected
to come closer to proportional allocation than sim-
ple random sampling, one might conjecture that the
relative increase in precision by poststratification
will be larger with simple random than with system-
atic sampling.

GHosH and VoaT (1993) affirmed that the condi-
tional variance, where the condition is a given sample
allocation, is the proper instrument for comparing
the poststratification mean with the regular simple
random or systematic sampling mean as estima-
tors of the true population mean. They observed
that the poststratified mean is often superior to the
regular mean when the conditional variance or the
conditional mean square error is used for compar-
ing both estimators (GHOSH, VoGgT 1988). HoLT and
SMITH (1979) affirmed that, in theory, neither the
post stratification estimator nor the sample mean
is uniformly best in all situations but empirical in-
vestigations indicate that post stratification offers
protection against unfavourable sample configura-
tions and should be viewed as a robust technique. As
each stratum mean is weighted by the relative size
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of that stratum in the population, the post stratified
estimator automatically corrects for any badly bal-
anced sample.

Variances and variance estimation

The unconditional variance of the poststratified
mean

L
yst‘past ZhZIWh yh

with y, the sample mean in stratum / and samples
of size n randomly selected in a population with L
strata is approximately

2 2, 1 2
(j}szf.post.tmcond~ _(1 B ) ZW S Z )S 1)
where W, and Si are, respectively, the relative size
and the variance of stratum /# (COCHRAN, 1977,
5A.42). The first term in equation (1) is the vari-
ance of the estimator ¥ of the population mean in
(pre)stratified random sampling with proportional
allocation

2 _1 n v 2
SREIIE) >
and the second represents the increase in vari-
ance that arises from the randomness of the n,
(CocH-RAN 1977, p. 134 f.). It is evident that this
term approximates zero when n—co. Furthermore,
if the S7 do not differ greatly, the increase is about
(L — 1)/n times the variance for proportional alloca-
tion, ignoring the finite population correction. With
n >> L the increase due to the second term in equa-
tion (1) is small compared with equation (2).
Because of the randomness of the within strata
sample sizes, the variance formulas for prestratified
samples may be regarded as inappropriate (WiL-
LIAMS 1962). However, although the variance of a
poststratified estimator can be computed uncondi-
tionally (i.e., across all possible realizations of within
strata sample sizes), inferences made conditionally
on the achieved sample configuration are desirable
(VALLIANT 1993). The conditional variance of the
poststratified mean, that is the variance given the

within strata sample sizes #,, ..., 1, is
L
2 —
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yst‘post,cond P"S[( h yh | 1 L
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L
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The respective estimators of (1), (2) and (3) are obtain-
ed by simply substituting the estimator s} for S7, e.g.
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Instead of (1), THomPsSON (1992) presented an
alternative approximation of the variance of the

poststratified mean, namely
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Yst.post.cond
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and he uses s2 as the according variance es-
timator, whlcfftéjgfsféoengtly estimates (only) the condi-
tional variance given the sample allocation n,, ..., n,,
what is but completely satisfactory because one is
usually interested in the precision of an estimate
based on the sample allocation actually obtained
(RAao 1988).

With k systematic samples the i of which yields a
simple mean ¥ (i) and a poststratified mean L post (@),
the true variances of those estimators are by defini-
tion

1S 1w )2
G%Sj’sz ?;1( y (l) - 1?12:1_)/ (l)) (4)
1 1 k _ ) 2
O-itPOStSJ’S Z( “1”’“ - k_lglyst.post(l)) (5)

Finally, the variance of the sample mean y in simple
random sampling is denoted by

gg:l(l__)
F7 N

and, based on k simple random samples, we use

—-—Z(y(z ——Zy ) o)

(11

Z(y 7)’ 6)

= 1y - . 1 L 2
G%st.post = ?241( ystpost(l) - ;;iyst.post(l)) (8)

for the simulated variances of simple and poststrati-
fied means. The ~ is used to symbolize the variances
approximated by simulation; variances (4) and (5) are
true variances because all k systematic samples are
considered. In the simulation study equations (6) and
(7) should give almost equal results.

Data base and virtual forest landscape

In order to carry out a large scale simulation study,
it was intended to create an artificial population as
close as possible to a real forest landscape. There-
fore, volume data and actual forest coverage from a
geographical information system of the Solling area
(Lower Saxony, Germany) were used as the data
base. Volume data stem from a forest district inven-
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Fig. 1. Spatial coverage of the strata in the Solling, relative volume frequencies and fitted Weibull probability density function

of each stratum

tory based on concentric circular plots where tree
species and diameter in breast height of all sample
trees are available as well as some heights required
for calculating volumes (BOCKMANN et al. 1998). In
total, data from 5,680 sample plots were incorpo-
rated in the creation of a virtual population.

The virtual population (Fig. 1) is represented by a
mosaic of 212,386 squares (40m by 40m side length)
each of which was assigned to one of 7 strata (Ta-
ble 1) according to the stratum of the forest stand
covering the centre of the square. Four strata were
dominated by spruce (Picea abies [L.] Karst.) and
three strata by beech (Fagus sylvatica L.).

Also, each inventory sample plot was assigned
to one of the strata and a three-parameter Weibull
function fitted to the volume per ha distribution of
all sample plots of a stratum (Table 2). The Weibull
parameters were estimated by the Maximum Likeli-
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hood method, with initial parameter values a = 0.95

xV .2 B=V,u—oandy=p/S ,6 where V__ isthe
minimum volume, V., represents the 63" percen-

tile of volumes, and S, is the standard deviation of
the volume data. The resulting volume distributions
range from negative exponential to left-skewed
shapes (Fig. 1). From those volume distributions, the
volume per ha for each square unit of the population
was randomly selected depending on the stratum
of the square unit. That implies in particular that
trends, periodic variation or autocorrelation within
strata are unlikely.

Simulation
Systematic samples were now chosen on square

grids of 20 different grid widths representing sam-
pling intensities from 0.047% to 1.0%. Those widths
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Table 1. Characteristics of the 7 strata for Solling data

Age class (years) Stratum N, W,

<40 1 26,241 0.124

Coniferous trees dominate 41-80 > 20,801 0145
81-120 3 24,554 0.116

> 120 4 39,002 0.184

<40 5 30,690 0.145

Broadleaf trees dominate 41-80 6 36,498 0.172
> 80 7 24,600 0.116

N-= 212,386

Table 2. Characteristic values of volume and estimated parameters of the three-parameter Weibull function per stratum

Stratum Number of Volume (m?3/ha) Parameters of the Weibull function
data points  Minimum  Maximum T o o B Y
1 405 0.590 569.441 93.449 97.185 0.589938 89.195977 0.913904
2 372 4.228 822.673 225.129 119.641 4.228146  241.675473  1.764021
3 387 1.259 899.537 317.430 146.725 1.258811  343.767969  2.017091
4 894 0.661 1,085.414 314.517 165.170 0.661273  346.609165  1.831620
5 937 0.417 947.915 185.710 117.432 0.417108  201.749274  1.476572
6 1,658 0.923 1,037.621 348.028 160.364 0.922846  385.693802  2.159353
7 1,027 3.102 1,181.949 491.999 170.687 3.101742  535.959991  3.005017

were realized by selecting each 10" square in both
directions for about 1% sampling intensity and each
46" square for 0.047%. Thus the number of system-
atic samples obtained varyed between k = 100 for the
smallest and k = 2,116 for the largest grid width, sizes
sufficiently large to obtain #, > 1 in each stratum.
For each of these intensities, the total number of
different systematic samples were drawn, the values
of the corresponding sampling units identified, and
the simple (¥) and stratified (yst‘pm) means and the
variance estimators for each sample as well as the

n =100 n=
Frequency Frequency
0.300 0.200H
0.24H 0.24H
0,180 0.18H
0120 0.12H
0.06H (.06
0.000H 0.000H

251.213

223631

219,304

Fig. 2. Histogram of the poststratified sample mean y_
Here 7 is the arithmetic mean of the sample size of the
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true variances (4) and (5) calculated. Additionally,
random samples (without replacement) of sample
sizes equal to the mean sample sizes of the systematic
samples were drawn and the corresponding %, ¥, i post
the variance estimators as well as the “true” variances
(7) and (8) calculated. All means and variances were
averaged over the k systematic or random samples.

Sample sizes n vary among the k systematic sam-
ples and are constant among the k random samples.
However, the within stratum sample sizes vary for
both systematic and random sampling.

402

n=1,755
Frequency
0,300

0240

0180

012K

0.0

0.00

200115 2B5.872 285,972

obtained from the corresponding k different systematic samples.
samples in the population
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Table 3. Characteristic values of systematic ¥,

Mean Number Volume (m?/ha)
n of systematic samples Minimum Maximum mean 7y, 9
st.post st.post.sys
100 2,116 223.631 319.384 275.394 15.300
147 1,444 239.977 314.349 275.431 12.161
195 1,089 238.964 318.364 275.487 11.333
252 841 245.358 304.173 275.479 9.523
291 729 252.316 302.744 275.428 8.828
340 625 254.066 302.227 275.417 8.143
402 529 251.219 300.115 275.457 7.665
439 484 255.799 298.070 275.441 7.419
482 441 256.247 292.334 275.382 6.593
531 400 258.862 294.995 275.477 6.395
588 361 259.578 293.504 275.407 5.889
656 324 260.168 293.516 275.448 6.081
735 289 259.209 288.234 275.459 5.607
830 256 262.688 290.079 275.450 5.103
944 225 262.346 287911 275.435 4.796
1,084 196 263.943 288.117 275.466 4.314
1,257 169 266.995 284.735 275.462 4.049
1,475 144 265.965 284.841 275.447 3.976
1,755 121 265.872 285.972 275.433 3.670
2,124 100 267.151 284.702 275.424 3.004

RESULTS AND DISCUSSION

In theory, in a population with mean p and va-
riance o2, with simple random sampling without
replacement and with large sample size, the distri-
bution of the sample mean can be approximated
by a normal distribution with mean p and variance
(1 — n/N) x 6*/n, independently of the original dis-
tribution of the variable of interest. Here, although

Systematic

20
§ 18 O-.;F.s!.,wx fald
E 16
= T
£ 14
5 o
° 12
=
210 h
A S
g ..
N ° - \.\.\'\-_;
= 4 —
g
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the estimate of the true mean is unbiased and the
variance of the mean decreases (Tables 3 and 4) with
increasing #, its histogram approximates the normal
probability density function (pdf) better for smaller
than for the larger sample sizes (Fig. 2). This is due to
the decreasing number k of systematic samples with
increasing sample size n (k = N/n).

As expected (see chapter 2), the simulation confirmed

the more or less erratic decrease of o- (Fig. 3a)
y St.post.sys

Random

18 —%{ —0—(3_2)0'5 —D—gf +5}7”.J

Standard deviation of the mean

0 500 1000 1500 2000 2500

Sample size (n)

Fig. 3. Standard error of the poststratified mean for systematic and random sampling, the latter compared with the rooted mean

variance estimate of the k replicated simple random samples and 55 according to (7)
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Table 4. Characteristic values of random 3, .

Sample size Number Volume (m*/ha)
n of random samples Minimum Maximum meany, ., Gt post
100 2,116 221.263 339.764 275.452 15.505
147 1,444 237.849 315.398 275.122 13.060
195 1,089 239.759 311.636 274.785 10.768
252 841 246.214 307.115 275.199 9.615
291 729 249.701 299.559 274.906 8.587
340 625 251.328 303.244 275.899 8.288
402 529 250.967 299.248 274.377 7.504
439 484 256.562 292.695 275.097 7.067
482 441 259.611 294.242 275.809 6.560
531 400 257.124 296.154 275.342 6.834
588 361 258.846 292.583 275.493 6.279
656 324 256.534 292.863 275.233 6.090
735 289 259.901 293.623 275.352 5.243
830 256 258.429 290.645 275.150 5.318
944 225 262.949 287.922 275.372 4.644
1,084 196 261.287 292.002 275.442 4.547
1,257 169 264.998 287.275 275.283 4.270
1,475 144 264.997 287.718 275.699 4.237
1,755 121 266.267 284.233 275.063 3.294
2,124 100 267.991 284.271 275.344 3.761

with increasing sample size. The erratic behavior is
more expressed for n > k, here beyond sample sizes
of about 460, that is with sample sizes where ¢ > k
might occur and where the variability of the sample
size n decreases slower beyond that point (Fig. 4).
Similar erratic oscillations of G - occur with
random sampling, and the rooted Mean variance
estimate of the k replicated simple random samples
and B; according to (7) exhibit no remarkable dif-
ferences (Fig. 3b), although both are larger than

Fig. 5a compares the square root of the means of

the estimates s2 for the conditional vari-
Yst.post.uncond .
ance (1), the means of 53273; steong &S €Stimates for the
unconditional variance (2) and the means of the
random sample variance estimates s2 with the true
variance o2 within the range of the analyzed
. Y st.post.sys :

sample sizes. Obviously, s% overestimates the true
variance by far, and the conditional and uncondi-
tional variance estimators, on an average, exhibit
no remarkable differences. Thus, the component of

variability associated to the variability of the sample
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Fig. 4. Sample sizes of the systematic samples and related c¢/k values, standard deviations (black diamonds), and coefficients of

variation (grey diamonds)
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size is, as it was expected, practically zero. Biases
are erratic, varying predominantly within a range
of £ 5% of the true standard error of the systematic
samples. Similar results can be observed with ran-
dom sampling (Fig. 5b) where the same variance
estimators are compared with the “true” variance
oy of the poststratified mean.

Tniqng the true standard deviation 3, of the un-
stratified mean of a systematic sample asa reference,
the standard deviation O postsys of the poststratified
mean under systematic sampling was about 16%
smaller on the average (Fig. 6a). A similar gain in
precision can be achieved by (pre)stratified sampling
with proportional allocation in the underlying vir-
tual forest landscape. Beyond sample sizes of about
500, that is of samples where 7 is larger than &, the
variance ratios are less stable with gains in precision
between 6 % and 25 %.

With random sampling (Fig. 6b), gains in precision
are only slightly larger. Probably, the little size and
spatial distribution of connected areas of the diffe-
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Fig. 8. Relative efficiency of poststratification in systematic and random sampling, artificial strata

rent strata leads to an allocation of the samples which
is only a little closer to proportionality for systematic
sampling than for random sampling. In that case
reweighting by poststratification must have a similar
effect for both sampling techniques.

In order to analyze the influence of the spatial
structure of strata on the efficiency of poststratifi-
cation, an artificial stratification was set up (Fig. 7).
Here, the strata comprise larger connected subareas
as for the real spatial distribution of strata (Fig. 1).
The allocation of samples under systematic samples
will be closer to proportionality in that case and
should result in a lower relative efficiency of the
poststratified mean (systematic sampling). This
conjecture could be stated by the results presented
in Fig. 8. Precision increased only by about 4%,
instead of 16% before, for systematic sampling. For
random sampling the increase of precision by post-
stratification remained at the same level as for the
real stratification.

CONCLUSION

The case study presented reveals that mean esti-
mators under systematic sampling can remarkably
be improved in precision by poststratification when
strata comprise a large number of small connected
subareas. The larger connected subareas are the
less is the gain in precision. The conditional as
well as the unconditional variance estimator for
poststratified sampling were only slightly biased
(< 5%) with varying signs for different sample sizes,
particularly in case of systematic random sampling.
They can be expected practically identical in large
scale forest inventories; here we studied sample
sizes above 100.

For random sampling, the spatial structure of
strata had no influence on the efficiency of post-
stratification compared to simple random sample
means.

J. FOR. SCI,, 53,2007 (4): 139-148

With the underlying population, stratified ran-
dom sampling with proportional allocation and
poststratified systematic sampling achieved similar
precision, but this might be different when within
strata variances vary more among strata than in this
case study.
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O prinosech poststratifikace v lesnické inventarizaci

ABSTRAKT: Na zdkladé GIS databdze a Gdaju lesnické inventarizace pro urcity tsek lesa byl vytvoren rozsdhly
virtudlni zakladni soubor. Tento soubor byl vyuzit pro simulaci velkoplo$né inventarizace s odhady parametra zis-
kanymi pomoci poststratifikace systematického a jednoduchého ndhodného vybéru a pro studium zvyseni presnosti
odhadu. Pres systematicky vybér kombinovany s poststratifikaci se jevi stale jesté efektivnéjsi nez nestratifikovany
systematicky vybér, zvySeni presnosti se blizi vysledkiim ziskanym z jednoduchého ndhodného vybéru s poststrati-
fikaci. Poststratifikovany odhad rozptylu pro podminény rozptyl stanoveny na zékladé velikosti vybért jednotlivych
oblasti (strat) slouzi jako uspokojivy odhad v pripadé systematického vybéru. Rozdily mezi nepodminénym a pod-

minénym rozptylem byly shledany pro vSechny analyzované velikosti vybéru jako zanedbatelné.

Klicova slova: poststratifikace; systematicky vybér; jednoduchy ndhodny vybér; podminény rozptyl
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