J. For. Sci., X:X | DOI: 10.17221/55/2025-JFS
Modulating Norway spruce growth and resilience through thinning intensity under climate change conditionsOriginal Paper
- 1 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- 2 Department of Silviculture, Forestry and Game Management Research Institute, Opočno, Czech Republic
In recent decades, Norway spruce (Picea abies) stands have become increasingly vulnerable to frequent droughts and associated outbreaks of secondary biotic pests, resulting in significant degradation of forest ecosystems. To preserve their production and ecological functions, it is necessary to apply well-adapted silvicultural practices that mitigate the risk of stand decline. This study examines the effects of two thinning intensities (moderate and heavy) on stand productivity and resilience under varying site conditions. Three long-term research sites with paired differently thinned plots located within and outside the natural range of Norway spruce in the Czech Republic were analysed. Tree-ring width measurements were used to calculate radial growth trends and four resilience indices (resistance, resilience, recovery and average relative growth reduction). Across sites Blaník (BL), Tetřeví Boudy (TB) and Železná Ruda (ZR), basal area increment (BAI) differed significantly between thinning intensities (BL: P = 0.044; TB: P = 0.0076; ZR: P < 0.001), with moderate thinning showing higher BAI at BL and TB, whereas heavy thinning reduced growth at the waterlogged TB site. Site-specific differences in tree growth responses to negative pointer years were evaluated, particularly concerning drought events. Resilience metrics computed for five drought pointer years (1976, 2000, 2003, 2015, 2019) showed no consistent differences between thinning intensities; however, at ZR, heavy thinning yielded higher resilience (Rs) and resistance (Rt) in 2015 and 2019. During drought years, the average relative growth reduction (ARGR) ranged from 3% to 31%, with the lowest values under moderate thinning. Overall, moderate thinning enhanced stand productivity and resilience, whereas heavy thinning had adverse effects at the waterlogged site. These results highlight the need to adapt silvicultural practices to local ecological conditions to ensure long-term stability and productivity.
Keywords: climate-growth relationships; climatic stress; dendroecology; resilience indices; silvicultural treatments; tree-ring analysis
Received: July 20, 2025; Revised: September 10, 2025; Accepted: September 11, 2025; Prepublished online: October 21, 2025
References
- Adams H.D., Luce C.H., Breshears D.D., Allen C.D., Weiler M., Hale V.C., Smith A.M.S., Huxman T.E. (2012): Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5: 145-159.
Go to original source... - Anderegg W.R., Hicke J.A., Fisher R.A., Allen C.D., Aukema J., Bentz B., Hood S., Lichstein J.W., Macalady, A.K., McDowell N., Pan Y., Raffa K., Sala A., Shaw J.D., Stephenson N.L., Tague C., Zeppel M. (2015): Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208: 674-683.
Go to original source...
Go to PubMed... - Baillie M.G.L., Pilcher J.R. (1973): A simple crossdating program for tree-ring research. Tree-Ring Bulletin, 33: 7-14.
- Beguería S., Vicente-Serrano S.M., Reig F., Latorre B. (2014): Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34: 3001-3023.
Go to original source... - Biondi F., Qeadan F. (2008): A theory-driven approach to tree-ring standardization: Defining the biological trend from expected basal area increment. Tree-Ring Research, 64: 81-96.
Go to original source... - Brang P., Spathelf P., Larsen J.B., Bauhus J., Bončina A., Chauvin C., Drössler L., García-Güemes C., Heiri C., Kerr G., Lexer M.J., Mason B., Mohren F., Mühlethaler U., Nocentini S., Svoboda M. (2014): Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry, 87: 492-503.
Go to original source... - Bunn A.G. (2008): A dendrochronology program library in R (dplR). Dendrochronologia, 26: 115-124.
Go to original source... - Bunn A.G., Korpela M., Biondi F., Campelo F., Mérian P., Qeadan F., Zang C. (2020): dplR: Dendrochronology Program Library in R. R Package Version 2020. Vienna, R Foundation. Available at: https://github.com/OpenDendro/dplR
- Buras A., Wilmking M. (2015): Correcting the calculation of Gleichläufigkeit. Dendrochronologia, 34: 29-30.
Go to original source... - Campelo F., Gutiérrez E., Ribas M., Sanchez-Salguero R., Nabais C., Camarero J.J. (2018): The facultative bimodal growth pattern in Quercus ilex - A simple model to predict sub-seasonal and inter-annual growth. Dendrochronologia, 49: 77-88.
Go to original source... - Caudullo G., Tinner W., De Rigo D. (2016): Picea abies in Europe: Distribution, habitat, usage and threats. European Atlas of Forest Tree Species, 114: 116.
- Cavin L., Mountford E.P., Peterken G.F., Jump A.S. (2013): Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Functional Ecology, 27: 1424-1435.
Go to original source... - Černý J. (2023): Pre-commercial thinning in young Norway spruce stands as a tool mitigating global climate change? Zprávy lesnického výzkumu, 68: 149-158. (in Czech)
- Chen S., Shahi C., Chen H.Y., McLaren B. (2017): Economic analysis of forest management alternatives: Compositional objectives, rotation ages, and harvest methods in boreal forests. Forest Policy and Economics, 85: 124-134.
Go to original source... - Cook E.R., Peters K. (1981): The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41: 45-53.
- Cook E.R., Kairiukstis L.A. (1990): Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht, Kluwer Academic Publishers: 394.
- Cornes R.C., van der Schrier G., van den Besselaar E.J.M., Jones P.D. (2018): An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres, 123: 9391-9409.
Go to original source... - Cosofret C., Bouriaud L. (2019): Which silvicultural measures are recommended to adapt forests to climate change? A literature review. Bulletin of the Transilvania University of Brasov. Series II: Forestry Wood Industry Agricultural Food Engineering, 12: 13-34.
Go to original source... - Coutts M.P., Philipson J.J. (1978): Tolerance of tree roots to waterlogging: II. Adaptation of Sitka spruce and lodgepole pine to waterlogged soil. New Phytologist, 80: 71-77.
Go to original source... - D'Amato A.W., Bradford J.B., Fraver S., Palik B.J. (2013): Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23: 1735-1742.
Go to original source...
Go to PubMed... - D'Andrea G., Šimůnek V., Pericolo O., Vacek Z., Vacek S., Corleto R., Olejár L., Ripullone F. (2023): Growth response of Norway spruce [Picea abies (L.) Karst.] in central Bohemia (Czech Republic) to climate change. Forests, 14: 1215.
Go to original source... - Đodan M., Perić S. (2019): Windthrow resistance of Norway spruce [Picea abies (L.) Karst.] forest cultures - Preliminary results. South-East European Forestry: SEEFOR, 10: 77-88.
Go to original source... - Dušek D., Novák J., Slodičák M. (2014): Response of young spruce stands on thinning in stands affected by long-term decline. Zpravy lesnického výzkumu, 59: 104-108. (in Czech)
- Dymond S., Kolka R.K., Bolstad P.V., Gill K., Curzon M., D'Amato A.W. (2015): Excess growing-season water limits lowland black spruce productivity. In: AGU Fall Meeting Abstracts, Vol. 2015, San Francisco, Dec 14-18, 2015: GC33B-1277.
- Eckstein D., Bauch J. (1969): Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt, 88: 230-250. (in German)
Go to original source... - Fritts H.C. (1971): Dendroclimatology and Dendroecology. Quaternary Research, 1: 419-449.
Go to original source... - Fritts H.C. (1976): Tree Rings and Climate. New York, Academic Press: 567.
- Fuchs Z., Vacek Z., Vacek S., Černý J., Cukor J., Šimůnek V., Gallo J,. Hájek V. (2025): Growth responses of European beech (Fagus sylvatica L.) and Oriental beech (Fagus orientalis Lipsky) along an elevation gradient under global climate change. Forests, 16: 655.
Go to original source... - Gazol A., Camarero J.J., Anderegg W.R.L., Vicente-Serrano S.M. (2017): Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26: 166-176.
Go to original source... - Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. (2021): Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075.
Go to original source... - Huber C., Langmaier M., Stadlmann A., Hochbichler E., Grabner M., Teischinger A., Konnerth J., Grabner M., Müller U., Pramreiter M. (2023): Potential alternatives for Norway spruce wood: A selection based on defect-free wood properties. Annals of Forest Science, 80: 41.
Go to original source... - IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th Ed. Vienna, International Union of Soil Sciences (IUSS): 236.
- Jaime L., Batllori E., Lloret F. (2024): Bark beetle outbreaks in coniferous forests: A review of climate change effects. European Journal of Forest Research, 143: 1-17.
Go to original source... - Jansson G., Danusevičius D., Grotehusman H., Kowalczyk J., Krajmerova D., Skrøppa T., Wolf H. (2013): Norway Spruce [Picea abies (L.) H. Karst.]. In: Pâques L. (ed.): Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Dordrecht, Springer: 123-176.
Go to original source... - Jevšenak J. (2020): New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia, 63: 125753.
Go to original source... - Jevšenak J., Saražin J. (2023): Pinus halepensis is more drought tolerant and more resistant to extreme events than Pinus nigra at a sub-Mediterranean flysch site. Trees, 37: 1281-1286.
Go to original source... - Klesse S., Etzold S., Frank D. (2016): Integrating tree-ring and inventory-based measurements of aboveground biomass growth: Research opportunities and carbon cycle consequences from a large snow breakage event in the Swiss Alps. European Journal of Forest Research, 135: 297-311.
Go to original source... - Klimo E., Kulhavý J. (2006): Norway spruce monocultures and their transformation to close-to-nature forests from the point of view of soil changes in the Czech Republic. Ekológia (Bratislava), 25: 27-43.
- Leppä K., Hökkä H., Laiho R., Launiainen S., Lehtonen A., Mäkipää R., Peltoniemi M., Saarinen M., Sarkkola S., Nieminen M. (2020): Selection cuttings as a tool to control water table level in boreal drained peatland forests. Frontiers in Earth Science, 8: 576510.
Go to original source... - Lloret F., Keeling E.G., Sala A. (2011): Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120: 1909-1920.
Go to original source... - Mäkinen H., Isomäki A. (2004): Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. Forest Ecology and Management, 201: 295-309.
Go to original source... - Maxwell R.S., Larsson L.A. (2021): Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia, 67: 125841.
Go to original source... - Mikulenka P., Prokůpková A., Vacek Z., Vacek S., Bulušek D., Simon J., Šimůnek V., Hájek V. (2020): Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Central European Forestry Journal, 66: 23-36.
Go to original source... - Nehrbass-Ahles C., Babst F., Klesse S., Nötzli M., Bouriaud O., Neukom R., Dobbertin M., Frank D. (2014): The influence of sampling design on tree-ring-based quantification of forest growth. Global Change Biology, 20: 2867-2885.
Go to original source...
Go to PubMed... - Nolet P., Kneeshaw D., Messier C., Béland M. (2018): Comparing the effects of even- and uneven-aged silviculture on ecological diversity and processes: A review. Ecology and Evolution, 8: 1217-1226.
Go to original source...
Go to PubMed... - Novák J., Dušek D., Slodičák M., Kacálek D. (2017): Importance of the first thinning in young mixed Norway spruce and European beech stands. Journal of Forest Science, 63: 254-262.
Go to original source... - Parmenter R.R., Losleben M.V. (2023): Influence of mixed conifer forest thinning and prescribed fire on soil temperature and moisture dynamics in proximity to forest logs: A case study in New Mexico, USA. Forests, 14: 1117.
Go to original source... - Peel M.C., Finlayson B.L., McMahon T.A. (2007): Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 1633-1644.
Go to original source... - Podrázský V. (2006): Effects of thinnig regime on the humus form state. Ekológia (Bratislava) 25: 298-305.
- Podrázský V., Novák J., Moser W.K. (2005): Vliv výchovných zásahů na množství a charakter nadložního humusu v horském smrkovém porostu. Zprávy lesnické výzkumu, 50: 222-225. (in Czech)
- Podrázský V., Remeš J. (2007): Změny kvality a množství nadložního humusu při přirozeném zmlazení bukových porostů na území Školního lesního podniku Kostelec nad Černými lesy. Zprávy lesnického výzkumu, 52: 118-122. (in Czech)
- Poleno Z., Vacek S., Podrázský V. (2009): Pěstování lesů III: Praktické postupy pěstování lesů. Kostelec nad Černými lesy, Lesnická práce: 951. (in Czech)
- Pretzsch H., Grams T., Häberle K.H., Pritsch K., Bauerle T., Rötzer T. (2020): Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees, 34: 957-970.
Go to original source... - Razavi S., Vogel R. (2018): Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales. Journal of Hydrology, 557: 109-115.
Go to original source... - R Core Team (2024): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at: https://www.R-project.org/
- Schuster R., Oberhuber W. (2013): Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed-coniferous forest in the Alps. Canadian Journal of Forest Research, 43: 609-618.
Go to original source...
Go to PubMed... - Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., Gharun M., Grams T.E.E., Hauck M., Hajek P., Hartmann H., Hiltbrunner E., Hoch G., Holloway-Phillips M., Körner C., Larysch E., Lübbe T., Nelson D.B., Rammig A., Rigling A., Rose L., Ruehr N.K., Schumann K., Weiser F., Werner C., Wohlgemuth T., Zang C.S., Kahmen A. (2020): A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45: 86-103.
Go to original source... - Skrøppa T. (2003): EUFORGEN Technical Guidelines for Genetic Conservation and Use for Norway Spruce (Picea abies). Rome, International Plant Genetic Resources Institute: 6.
- Sohn J.A., Hartig F., Kohler M., Huss J., Bauhus J. (2016): Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecological Applications, 26: 2190-2205.
Go to original source...
Go to PubMed... - Souček J., Tesař V. (2008): Metodika přestavby smrkových monokultur na stanovištích přirozených smíšených porostů. Lesnický průvodce 4/2008. Strnady, Forestry and Game Management Research Institute: 37. (in Czech)
- Spathelf P., Bolte A., van der Maaten E. (2015): Is Close-to-Nature Silviculture (CNS) an adequate concept to adapt forests to climate change? Landbauforschung Volkenrode, 65: 161-170.
- Speer J.H. (2010): Fundamentals of Tree-Ring Research. Tucson, University of Arizona Press: 333.
- Spiecker H. (2000): The growth of Norway spruce [Picea abies (L.) Karst.] in Europe within and beyond its natural range. In: Hasenauer H. (ed.): Forest Ecosystem Restoration. Proceedings of the International Conference, Vienna, Apr 10-12, 2000: 247-256.
- Stokes M.A., Smiley T.L. (1996): An Introduction to Tree-Ring Dating. Tucson, University of Arizona Press: 73.
- Šimůnek V., Stejskal J., Čepl J., Korecký J., Vacek Z., Vacek S., Bílek L., Švanda M. (2023): Different adaptive potential of Norway spruce ecotypes in response to climate change in Czech long-term lowland experiment. Forests, 14: 1922.
Go to original source... - Štefančík I. (2013): Quantitative production of spruce stands with different initial spacing and tending regime. Zprávy lesnického výzkumu, 58: 37-49. (in Slovak)
Go to original source... - Toraño Caicoya A., Biber P., Poschenrieder W., Schwaiger F., Pretzsch H. (2018): Forestry projections for species diversity-oriented management: An example from Central Europe. Ecological Processes, 7: 23.
Go to original source... - Tulik M., Grochowina A., Jura-Morawiec J., Bijak S. (2020): Groundwater level fluctuations affect the mortality of black alder (Alnus glutinosa Gaertn.). Forests, 11: 134.
Go to original source... - Vacek Z., Prokůpková A., Vacek S., Cukor J., Bílek L., Gallo J., Bulušek D. (2020): Silviculture as a tool to support stability and diversity of forests under climate change: Study from Krkonoše Mountains. Central European Forestry Journal, 66: 116-129.
Go to original source... - Vacek Z., Vacek S., Cukor J. (2023): European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332: 117353.
Go to original source...
Go to PubMed... - Van der Maaten-Theunissen M., Trouillier M., Schwarz J., Skiadaresis G., Thurm E.A., van der Maaten E. (2021): pointRes 2.0: New functions to describe tree resilience. Dendrochronologia, 70: 125899.
Go to original source... - Vejpustková M., Čihák T. (2019): Climate response of Douglas fir reveals recently increased sensitivity to drought stress in Central Europe. Forests, 10: 97.
Go to original source... - Vicente-Serrano S.M., Beguería S., López-Moreno J.I. (2010): A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23: 1696-1718.
Go to original source... - Vicente-Serrano S.M., Beguería S., Lorenzo-Lacruz J., Camarero J.J., López-Moreno J.I., Azorin-Molina C., Revuelto J., Morán-Tejeda E., Sanchez-Lorenzo A. (2012): Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16: 1-27.
Go to original source... - Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82.
Go to original source... - Vose J.M., Clark J.S., Luce C.H., Patel-Weynand T. (2016): Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis. Vol. 93. Washington, D.C., United States Department of Agriculture, Forest Service: 289.
Go to original source... - Wang A.F., Roitto M., Lehto T., Zwiazek J., Calvo-Polanco M., Repo T. (2013): Waterlogging under simulated late-winter conditions had little impact on the physiology and growth of Norway spruce seedlings. Annals of Forest Science, 70: 781-790.
Go to original source... - Westin J., Haapanen M. (2013): Norway spruce - Picea abies (L.) Karst. In: Mullin T.J., Lee S.J. (eds): Best Practice for Tree Breeding in Europe. Uppsala, Skogforsk: 29-49.
- Zang C., Hartl-Meier C., Dittmar C., Rothe A., Menzel A. (2014): Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology, 20: 3767-3779.
Go to original source...
Go to PubMed... - Zavadilová I., Szatniewska J., Stojanović M., Fleischer P., Vágner L., Pavelka M., Petrík P. (2023): The effect of thinning intensity on sap flow and growth of Norway spruce. Journal of Forest Science, 69: 205-216.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

ORCID...