J. For. Sci., 2025, 71(12):599-613 | DOI: 10.17221/79/2025-JFS

Leaf area index and soil water content responses to pre-commercial thinning in Norway spruce plantations under climate changeOriginal Paper

Jakub Černý ORCID...1,2,3, Zdeněk Vacek ORCID...4, Jan Cukor ORCID...1,4, Dominik Báňa2, Stanislav Vacek ORCID...4
1 Forestry and Game Management Research Institute, Jíloviště-Strnady, Czech Republic
2 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University Brno, Brno, Czech Republic
3 Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
4 Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

Global climate change (GCC) and increasing drought frequency pose a threat to the stability of European forests, particularly those of Norway spruce [Picea abies (L.) Karst.] plantations. We investigated how different pre-commercial thinning (PCT) intensities affect leaf area index (LAI) and its relationship to soil water content (SWC) in young spruce stands in northeastern Czechia. Three permanent research plots in a 13-year-old monoculture were subjected to mild PCT, heavy PCT, or left as an unthinned control in winter 2019/2020. Thinning caused an immediate decrease in LAI, with averages of 8.3 ± 1.1 m2·m–2 (mild), 3.8 ± 0.5 m2·m–2 (heavy) and 11.1 ±1.1 m2·m–2 (control) in 2020. By 2023, LAI in the mildly thinned stand had largely converged with the control, whereas the heavily thinned stand maintained significantly lower LAI. The strongest relationship between LAI and SWC occurred in the heavily thinned plot (R2 = 0.715 in 2021), while correlations were weak or transient in the mildly thinned and control plots. These results indicate that PCT intensity influences both the magnitude and duration of LAI reduction and is associated with differences in stand water dynamics. Appropriately adjusted thinning may therefore modestly affect water availability and could contribute to adaptive management of spruce forests under GCC.

Keywords: biometeorology, forest management; Picea abies; silvicultural intervention; stand structure

Received: November 4, 2025; Revised: December 11, 2025; Accepted: December 12, 2025; Published: December 22, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Černý J, Vacek Z, Cukor J, Báňa D, Vacek S. Leaf area index and soil water content responses to pre-commercial thinning in Norway spruce plantations under climate change. J. For. Sci. 2025;71(12):599-613. doi: 10.17221/79/2025-JFS.
Download citation

References

  1. Asner G.P., Scurlock J.M.O., Hicke J.A. (2003): Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12: 191-205. Go to original source...
  2. Aussenac G. (2000): Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Annals of Forest Science, 57: 287-301. Go to original source...
  3. Balandier P., Gobin R., Prévosto B., Korboulewsky N. (2022): The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: A literature review and analysis. European Journal of Forest Research, 141: 979-997. Go to original source...
  4. Bielak K., Dudzinska M., Pretzsch H. (2014): Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. Forest Systems, 23: 573-589. Go to original source...
  5. Bouriaud O., Popa I. (2009): Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees - Structure and Function, 23: 95-106. Go to original source...
  6. Bréda N.J.J. (2003): Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54: 2403-2417. Go to original source... Go to PubMed...
  7. Bussotti F., Borghini F., Celesti C., Leonzio C., Bruschi P. (2000): Leaf morphology and macronutrients in broadleaved trees in central Italy. Trees - Structure and Function, 14: 361-368. Go to original source...
  8. Čermák P. (2014): Jak reaguje smrk na klimatické změny. In: Novák J., Dušek D. (eds.): Chřadnutí smrku v oblasti severní a střední Moravy. Budišov nad Budišovkou, Forestry and Game Management Research Institute, Opočno Research Station: 9-15. (in Czech)
  9. Černý J. (2023): Výchovný zásah v mladých smrkových porostech jako nástroj mitigace globální klimatické změny? Reports of Forestry Research/Zprávy lesnického výzkumu, 68: 149-158. (in Czech) Go to original source...
  10. Černý J., Pokorný R. (2021): Field measurement of effective leaf area index using optical device in vegetation canopy. Journal of Visualized Experiments, 173: e62802. Go to original source...
  11. Černý J., Krejza J., Pokorný R., Bednář P. (2018): LaiPen LP 100 - A new device for estimating forest ecosystem leaf area index compared to the etalon: A methodologic case study. Journal of Forest Science, 64: 455-468. Go to original source...
  12. Černý J., Pokorný R., Haninec P., Bednář P. (2019): Leaf area index estimation using three distinct methods in pure deciduous stands. Journal of Visualized Experiments, 150: e59757. Go to original source...
  13. Černý J., Pokorný R., Vejpustková M., Šrámek V., Bednář P. (2020): Air temperature is the main driving factor of radiation use efficiency and carbon storage of mature Norway spruce stands under global climate change. International Journal of Biometeorology, 64: 1599-1611. Go to original source... Go to PubMed...
  14. Chen J.M., Rich P.M., Gower S.T., Norman J.M., Plummer S. (1997): Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research: Atmospheres, 102: 29429-29443. Go to original source...
  15. Chroust L. (1997): Ekologie výchovy lesních porostů. Opočno, Forestry and Game Management Research Institute: 277. (in Czech)
  16. D'Andrea G., Šimůnek V., Pericolo O., Vacek Z., Vacek S., Corleto R., Olejár L., Ripullone F. (2023): Growth response of Norway spruce [Picea abies (L.) Karst.] in central Bohemia (Czech Republic) to climate change. Forests, 14: 1215. Go to original source...
  17. DeRose R.J., Seymour R.S. (2012): Leaf Area and structural changes after thinning in even-aged Picea rubens and Abies balsamea stands in Maine, USA. International Journal of Forestry Research, 2012: 181057. Go to original source...
  18. Diaci J., Rozenbergar D., Mikac S., Anić I., Hartman T., Bončina A. (2008): Long-term changes in tree species composition in old-growth Dinaric beech-fir forest. Glasnik za šumske pokuse, 42: 13-27.
  19. Diaci J., Rozenbergar D., Anić I., Mikac S., Saniga M., Kucbel S., Visnjic C., Ballia D. (2011): Structural dynamics and synchronous silver fir decline in mixed old-growth mountain forests in Eastern and Southeastern Europe. Forestry, 84: 479-491. Go to original source...
  20. Dohnal M., Černý T., Votrubová J., Tesař M. (2014): Rainfall interception and spatial variability of throughfall in spruce stand. Journal of Hydrology and Hydromechanics, 62: 277-284. Go to original source...
  21. Dušek D., Novák J., Černý J., Kacálek D. (2021): Vliv prvních výchovných zásahů v mlazinách na obsah vody ve svrchní vrstvě minerální půdy. Reports of Forestry Research/Zprávy lesnického výzkumu, 66: 270-276. (in Czech)
  22. Fang H., Baret F., Plummer S., Schaepman-Strub G. (2019): An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57: 739-799. Go to original source...
  23. Fleck S., Raspe S., Čater M., Schlappi P., Ukonmaanaho L., Greve M., Hertel C., Weiss M., Rumpf S., Thimonier A., Chianucci F., Beckschäfer P. (2020): Part XVII: Leaf area measurements. In: UNECE ICP Forests Programme Co-ordinating Centre (eds): Manual of Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Eberswalde, Thünen Institute of Forest Ecosystems: 3-43.
  24. Gazol A., Camarero J.J., Gutiérrez E., Popa I., Andreu-Hayles L., Motta R., Nola P., Ribas M., Sangüesa-Barreda G., Urbinati C., Carrer M. (2015): Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42: 1150-1162. Go to original source...
  25. Ge Z.M., Kellomäki S., Peltola H., Zhou X., Wang K.Y., Väisänen H. (2012): Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Annals of Forest Science, 68: 371-383. Go to original source...
  26. Ge Z.M., Kellomäki S., Peltola H., Zhou X., Väisänen H. (2013): Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Climatic Change, 118: 275-289. Go to original source...
  27. Gebhardt T., Häberle K., Matyssek R., Schulz C., Ammer C. (2014): The more, the better? Water relations of Norway spruce stands after progressive thinning. Agricultural and Forest Meteorology, 197: 235-243. Go to original source...
  28. Giagli K., Vavrčík H., Tsalagkas D., Černý J., Leugner J., Hacurová J., Gryc V. (2024): Effect of different stand densities on xylem and phloem formation in Norway spruce plantations. IAWA Journal, 45: 227-242. Go to original source...
  29. Gillerot L., Forrester D., Bottero A., Rigling A., Lévesque M. (2020): Tree neighbourhood diversity has negligible effects on drought resilience of European beech, silver fir and Norway spruce. Ecosystems, 24: 20-36. Go to original source...
  30. Grier C.G., Running S.W. (1977): Leaf area of mature Northwestern coniferous forests: Relation to site water balance. Ecology, 58: 893-899. Go to original source...
  31. Hallik L., Niinemets Ü., Wright I.J. (2009): Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist, 184: 257-274. Go to original source... Go to PubMed...
  32. Hirose T. (2005): Development of the Monsi-Saeki Theory on Canopy Structure and Function. Annals of Botany, 95: 483-494. Go to original source... Go to PubMed...
  33. Hlásny T., Mátyás C., Seidl R., Kulla L., Merganičová K., Trombik J., Dobor L., Barcza Z., Konôpka B. (2014): Climate change increases the drought risk in Central European forests: What are the options for adaptation? Central European Forestry Journal, 60: 5-18. Go to original source...
  34. Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. (2021): Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. Go to original source...
  35. Jaloviar P., Saniga M., Kucbel S., Pittner J., Vencurik J., Dovciak M. (2017): Seven decades of change in a European old-growth forest following a stand-replacing wind disturbance: A long-term case study. Forest Ecology and Management, 399: 197-205. Go to original source...
  36. Janík D., Adam D., Hort L., Král K., Šamonil P., Unar P., Vrška T. (2014): Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30 years. European Journal of Forest Research, 133: 1015-1028. Go to original source...
  37. Jaworski A., Pach M. (2014): A comparison of lower montane natural forest (Abies, Fagus, Picea) in Oszast Reserve and spruce monocultures in the Żywiecki Beskid and Śląski Beskid. Forest Research Papers, 75: 13-32. Go to original source...
  38. Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., Baret F. (2004): Review of methods for in situ leaf area index determination. Part I: Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121: 19-35. Go to original source...
  39. Konôpka B., Pajtík J., Marušák R., Bošeľa M., Lukac M. (2016): Specific leaf area and leaf area index in developing stands of Fagus sylvatica L. and Picea abies Karst. Forest Ecology and Management, 364: 52-59. Go to original source...
  40. Kull O., Broadmeadow M., Kruijt B., Meir P. (1999): Light distribution and foliage structure in an oak canopy. Trees  - Structure and Function, 14: 55-64. Go to original source...
  41. Leuschner C., Voß S., Foetzki A., Clases Y. (2006): Variation in leaf area index and stand leaf mass of European beech across gradients of soil acidity and precipitation. Plant Ecology, 186: 247-258. Go to original source...
  42. Mihai G., Teodosiu M., Birsan M.V., Alexandru A.M., Mirancea I., Apostol E.N., Garbacea P., Ionita L. (2020): Impact of climate change and adaptive genetic potential of Norway spruce at the south-eastern range of species distribution. Agricultural and Forest Meteorology, 291: 108040. Go to original source...
  43. MoA (2023): Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2022. Prague, Ministry of Agriculture of the Czech Republic: 134. (in Czech)
  44. Parker G.G. (2020): Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477: 118496. Go to original source...
  45. Parobeková Z., Pittner J., Kucbel S., Saniga M., Filípek M., Sedmáková D., Vencurik J., Jaloviar P. (2018): Structural diversity in a mixed spruce-fir-beech old-growth forest remnant of the Western Carpathians. Forests, 9: 379. Go to original source...
  46. Pavlištová H. (2022): Variabilita podkorunových srážek ve smrkových tyčkovinách v závislosti na intenzitě výchovného zásahu. [BSc. Thesis] Brno, Mendel University in Brno. (in Czech)
  47. Peel M.C., Finlayson B.L., McMahon T.A. (2007): Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 1633-1644. Go to original source...
  48. Pokorný R., Tomášková I., Havránková K. (2008): Temporal variation and efficiency of leaf area index in young mountain Norway spruce stand. European Journal of Forest Research, 127: 359-367. Go to original source...
  49. Poleno Z., Vacek S., Podrázský V., Remeš J., Štefančík I., Mikeska M., Kobliha J., Kupka I., Malík V., Turčáni M., Dvořák J., Zatloukal V., Bílek L., Baláš M., Simon J. (2009): Pěstování lesů III: Praktické postupy pěstování lesů. Kostelec nad Černými lesy, Lesnická práce: 952. (in Czech)
  50. Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65: 21-33. Go to original source...
  51. Rambo T.R., North M.P. (2009): Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. Forest Ecology and Management, 257: 435-442. Go to original source...
  52. Siegel S., Castellan Jr N.J. (1988): Nonparametric Statistics for the Behavioral Sciences. 2nd Ed. New York, McGraw-Hill Book Company: 399.
  53. Šimůnek V., Vacek Z., Vacek S., Švanda M., Podrázský V., Cukor J., Gallo J., Zahradník P. (2025): Bark beetle-induced salvage logging cycle is caused by weather patterns linked to the NAO and solar cycle in Central Europe. Forest Ecosystems, 13: 100328. Go to original source...
  54. Slodičák M. (2014): Příčiny chřadnutí smrku na Opavsku. In: Novák J., Dušek D. (eds): Chřadnutí smrku v oblasti severní a střední Moravy. Budišov nad Budišovkou, Forestry and Game Management Research Institute, Opočno Research Station: 5-8. (in Czech)
  55. Slodičák M., Novák J. (2006): Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. Forest Ecology and Management, 224: 252-257. Go to original source...
  56. Sohn J.A., Gebhardt T., Ammer C., Bauhus J., Häberle K.H., Matyssek R., Grams T.E.E. (2013): Mitigation of drought by thinning: Short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). Forest Ecology and Management, 308: 188-197. Go to original source...
  57. Špulák O. (2023): Stabilization of the pine increment during recent years of low precipitation and high temperatures by removal of the spruce lower storey. Forest Ecology and Management, 545: 121300. Go to original source...
  58. Šrámek V., Pokorný R., Kupec P. (2023): Voda v lesních ekosystémech. Strnady, Forestry and Game Management Research Institute: 108. (in Czech)
  59. Steckel M., del Río M., Heym M., Aldea J., Bielak K., Brazaitis G., Černý J., Coll L., Collet C., Ehbrecht M., Jansons A., Nothdurft A., Pach M., Pardos M., Ponette Q., Reventlow D.O.J., Sitko R., Svoboda M., Vallet P., Wolff B., Pretzsch H. (2020): Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak [Quercus robur L., Quercus petraea (Matt.) Liebl.] - Site water supply and fertility modify the mixing effect. Forest Ecology and Management, 461: 117908. Go to original source...
  60. Thomas P., Packham J.R. (2007): Ecology of Woodlands and Forests: Description, Dynamics and Diversity. Cambridge, Cambridge University Press: 528. Go to original source...
  61. Vacek Z. (2017): Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Central European Forestry Journal, 63: 23-34. Go to original source...
  62. Vacek Z., Vacek S., Bílek L., Král J., Remeš J., Bulušek D., Králíček I. (2014): Ungulate impact on natural regeneration in spruce-beech-fir stands in Černý důl Nature Reserve in the Orlické hory Mountains, case study from Central Sudetes. Forests, 5: 2929-2946. Go to original source...
  63. Vacek S., Vacek Z., Bulušek D., Bílek L., Schwarz O., Simon J., Štícha V. (2015): The role of shelterwood cutting and protection against game browsing for the regeneration of silver fir. Austrian Journal of Forest Science, 132: 81-102.
  64. Vacek Z., Prokůpková A., Vacek S., Bulušek D., Šimůnek V., Hájek V., Králíček I. (2021): Effect of Norway spruce and European beech mixing in relation to climate change: Structural and growth perspectives of mountain forests in Central Europe. Forest Ecology and Management, 488: 119019. Go to original source...
  65. Vacek Z., Vacek S., Cukor J. (2023): European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332: 117353. Go to original source... Go to PubMed...
  66. Vallet P., Pérot T. (2011): Silver fir stand productivity is enhanced when mixed with Norway spruce: Evidence based on large-scale inventory data and a generic modelling approach. Journal of Vegetation Science, 22: 932-942. Go to original source...
  67. Vejpustková M. (2022): Klimatické faktory limitující růst smrku na území České republiky v období 1968-2013. Reports on Forestry Research/Zprávy lesnického výzkumu, 67: 60-71. (in Czech)
  68. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82. Go to original source...
  69. Vospernik S., Heym M., Pretzsch H., Pach M., Steckel M., Aldea J., Brazaitis G., Bravo-Oviedo A., del Río M., Löf M., Pardos M., Bielak K., Bravo F., Coll L., Černý J., Drössler L., Ehbrecht M., Jansons A., Korboulewsky N., Jourdan M., Nord-Larsen T., Nothdurft A., Ruiz-Peinado R., Ponette Q., Sitko R., Svoboda M., Wolff B. (2023): Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - A dynamic, sensitive equilibrium. Forest Ecology and Management, 530: 120753. Go to original source...
  70. Vrška T., Adam D., Hort L., Kolář T., Janík D. (2009): European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians - A developmental cycle or a linear trend induced by man? Forest Ecology and Management, 258: 347-356. Go to original source...
  71. Watson D.J. (1947): Comparative physiological studies in the growth of field crops: I. Variation in net assimilation rate and leaf area between species, varieties, and within and between years. Annals of Botany, 11: 41-76. Go to original source...
  72. Welles J.M., Cohen S. (1996): Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47: 1335-1342. Go to original source...
  73. Zavadilová I., Szatniewska J., Stojanović M., Fleischer P., Pavelka M., Petrík P. (2023): The effect of thinning intensity on sap flow and growth of Norway spruce. Journal of Forest Science, 69: 205-216. Go to original source...
  74. Zhang X., Maggioni V., Rahman A., Houser P., Xue Y., Sauer T., Kumar S., Mocko D. (2020): The influence of assimilating leaf area index in a land surface model on global water fluxes and storages. Hydrology and Earth System Sciences, 24: 3775-3788. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.