J. For. Sci., 2025, 71(12):614-623 | DOI: 10.17221/74/2025-JFS
Variation in wood density between mature sessile oak and English oak trees growing in different vegetation zonesOriginal Paper
- 1 Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- 2 Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
Wood density is a fundamental functional trait influencing ecological adaptation, hydraulic safety, and timber utilisation in temperate hardwoods. This study investigated variation in wood density (12% moisture) across mature stands of two economically and ecologically vital European oak species, sessile oak [Quercus petraea (Matt.) Liebl.] and English oak (Quercus robur L.), growing in their characteristic vegetation zones in the Czech Republic. We assessed wood density at two heights (at 1.3 m and at the crown base) across six trees per plot and examined its relationship with tree-ring width and height. Results demonstrated statistically significant interspecific differences, with Q. petraea consistently exhibiting higher wood density (721 kg·m−3) than Q. robur (662 kg·m−3) at 1.3 m. Q. petraea showed a statistically nonsignificant higher density of 710 kg·m−3 at the crown base and an overall average of 717 kg·m−3, while Q. robur had densities of 701 kg·m−3 and 669 kg·m−3, respectively. Radial density profiles revealed species-specific patterns, with Q. robur showing a more uniform density distribution than the pronounced pith-to-bark gradients observed in Q. petraea. Regression analysis indicated that tree-ring width explained only 12–13% of the variance in density, so other anatomical factors, such as latewood proportion and tree-ring structure (number and cell size), should be examined as anatomical drivers of wood-density variation.
Keywords: Czech Republic; Quercus petraea (Matt.) Liebl.; Quercus robur L.; radial variation; wood properties
Received: October 15, 2025; Revised: December 12, 2025; Accepted: December 12, 2025; Published: December 22, 2025 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Arsić J., Stojanović M., Petrovičová L., Noyer E., Milanović S., Světlík J., Horáček P., Krejza J. (2021): Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2. PLOS One, 16: e0259054.
Go to original source...
Go to PubMed... - Beck H.E., McVicar T.R., Vergopolan N., Berg A., Lutsko N.J., Dufour A., Zeng Z., Jiang X., van Dijk A.I.J.M., Miralles D.G. (2023): High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections. Scientific Data, 10: 724.
Go to original source...
Go to PubMed... - Bergès L., Nepveu G., Franc A. (2008): Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. Forest Ecology and Management, 255: 567-579.
Go to original source... - Bouriaud O., Breda N., Le Moguédec G., Nepveu G. (2004): Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees, 18: 264-276.
Go to original source... - Chave J., Coomes D., Jansen S., Lewis S.L., Swenson N.G., Zanne A.E. (2009): Towards a worldwide wood economics spectrum. Ecology Letters, 12: 351-366.
Go to original source...
Go to PubMed... - Diaz-Maroto I.J., Vila-Lameiro P., Tahir S. (2017): Assessment of anatomical characteristics of wood - Bark, sapwood and heartwood - In hardwoods species of Galician oaks by image processing: Relationship with age. Wood Research, 62: 763-772.
- Dobrovolný L. (2014): Potential of natural regeneration of Quercus robur L. in floodplain forests in the southern part of the Czech Republic. Journal of Forest Science, 60: 534-539.
Go to original source... - Downes G., Drew D.M. (2008): Climate and growth influences on wood formation and utilisation. Southern Forests, 70: 1-13.
Go to original source... - Eaton E., Caudullo G., Oliveira S., de Rigo D. (2016): Quercus robur and Quercus petraea in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds): European Atlas of Forest Tree Species. Luxembourg, Publication Office of the European Union: 160-163.
- Fontes C.G., Pinto-Ledezma J., Jacobsen A.L., Pratt R.B., Cavender-Bares J. (2022): Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Functional Ecology, 36: 326-340.
Go to original source... - Fonti P., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., Eckstein D. (2009): Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 185: 42-53.
Go to original source...
Go to PubMed... - Friedrichs D.A., Büntgen U., Frank D.C., Esper J., Neuwirth B., Löffler J. (2009): Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology, 29: 39-51.
Go to original source...
Go to PubMed... - Galle A., Esper J., Feller U., Ribas-Carbo M., Fonti P. (2010): Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Annals of Forest Science, 67: 809.
Go to original source... - Guilley E. (2000): Wood density in sessile oak (Quercus petraea Liebl.): Modelling of the within- and between-tree variability; origin and non-destructive assessment of the 'tree' effect; interpretation of the developed model with anatomical traits. NNT: 00ENGR0005 [Ph.D. Thesis.] Paris, ENGREF/AgroParis-Tech.
- Guilley E., Hervé J., Nepveu G. (2004): The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. Forest Ecology and Management, 189: 111-121.
Go to original source... - Jacoby G.C., D'Arrigo R.D. (1995): Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9: 227-234.
Go to original source... - Jakubowski M., Dobroczyński M. (2021): Allocation of wood density in European oak (Quercus robur L.) trees grown under a canopy of Scots pine. Forests, 12: 712.
Go to original source... - Kasper J., Leuschner C., Walentowski H., Weigel R. (2022). Higher growth synchrony and climate change-sensitivity in European beech and silver linden than in temperate oaks. Journal of Biogeography, 50: 209-222.
Go to original source... - Leuschner C., Ellenberg H. (2017): Ecology of Central European Forests. Vegetation Ecology of Central Europe, Vol. 1. Berlin and Heidelberg, Springer: 972.
Go to original source... - Lexa J., Nečesaný V., Paclt J., Tesařová M., Štofko J. (1952): Mechanické a fyzikálne vlastnosti dreva. Bratislava, Práca - vydavateľstvo ROH: 432. (in Slovak).
- Mamoňová M. (2013): Wood Anatomy. Zvolen, Technical University in Zvolen: 123.
- Ministry of Agriculture (2024): Report on the State of Forestry in the Czech Republic in 2023. Prague, Ministry of Agriculture of the Czech Republic: 126.
- Mölder A., Meyer P., Nagel R.V. (2019): Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. Petraea) forests: An overview. Forest Ecology and Management, 437: 324-339.
Go to original source... - Móricz N., Mészáros I., Illés G.Z., Garamszegi B., Eötvös C.B., Kern A., Hirka A., Berki I., Borovics A., Hollós R., Németh T.M. (2025): Radial growth projections reveal site-specific futures of different oak species with contrasting water availability in SW Hungary. Frontiers in Forests and Global Change, 8: 1581222.
Go to original source... - Pérez-de-Lis G., Rozas V., Vázquez-Ruiz R.A., García-González I. (2018): Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agricultural and Forest Meteorology, 248: 205-214.
Go to original source... - Pratt R.B., Jacobsen A.L. (2017): Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40: 897-913.
Go to original source...
Go to PubMed... - Pretzsch H., Biber P., Schütze G., Kemmerer J., Uhl E. (2018): Wood density reduced while wood volume growth accelerated in Central European forests since 1870. Forest Ecology and Management, 429: 589-616.
Go to original source... - Rybníček M., Čermák P., Prokop O., Žid T., Trnka M., Kolář T. (2016): Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology, 75: 55-65.
Go to original source... - Schweingruber F.H. (1990): Anatomie europäischer Hölzer. Bern and Stuttgart, Haupt: 800. (in German)
- Sousa V., Silva M.E., Louzada J.L., Pereira H. (2021): Wood density and ring width in Quercus rotundifolia trees in southern Portugal. Forests, 12: 1499.
Go to original source... - Stimm K., Heym M., Uhl E., Tretter S., Pretzsch H. (2021): Height growth-related competitiveness of oak [Quercus petraea (Matt.) Liebl. and Quercus robur L.] under climate change in Central Europe. Is silvicultural assistance still required in mixed-species stands? Forest Ecology and Management, 482: 118780.
Go to original source... - Stojanović M., Sánchez-Salguero R., Levanič T., Szatniewska J., Pokorný R., Linares J.C. (2017): Forecasting tree growth in coppiced and high forests in the Czech Republic. The legacy of management drives the coming Quercus petraea climate responses. Forest Ecology and Management, 405: 56-68.
Go to original source... - Stojanović M., Basu S., Mikhailov S., Hawryło P., Socha J., Mikac S., Trlin D., Seim A., Hotter M., Lapin K., Németh T.M., Móricz N., Kern Z., Arvai M., Matović B., Kesić L., Stojnić S., Ježík M., Mezei P., Húdoková H., Ayaz S.M., Arsić J., Foltýnová L., Horáček P., Krejza J., Jevšenak J. (2025): Distinct climate sensitivity and resilience mechanisms of pedunculate oak (Quercus robur L.) across a temperature gradient. Forest Ecology and Management, 596: 123069.
Go to original source... - Úradníček L., Chmelař J. (1998): Forestry Dendrology. Brno, Mendel Agriculture and Forestry University in Brno: 167.
- Vavrčík H., Gryc V. (2012): Analysis of the annual ring structure and wood density relations in English oak and Sessile oak. Wood Research, 57: 573-580.
- Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82.
Go to original source... - Van Leeuwen M., Hilker T., Coops N.C., Frazer G., Wulder M.A., Newnham G.J., Culvenor D.S. (2011): Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review. Forest Ecology and Management, 261: 1467-1478.
Go to original source... - Wagenführ R. (2000): Holzatlas. Leipzig, Fachbuchverlag: 707. (in German)
- Zanne A.E., Lopez-Gonzalez G., Coomes D.A., Ilic J., Jansen S., Lewis S., Miller R., Swenson N., Wiemann M., Chave J. (2009): Data from: Towards a Worldwide Wood Economics Spectrum. Global Wood Density Database [Dataset]. Dryad.
- Zanne A.E., Westoby M., Falster D.S., Ackerly D.D., Loarie S.R., Arnold S.E.J., Coomes D.A. (2010): Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97: 207-215.
Go to original source...
Go to PubMed... - Zeidler A., Borůvka V. (2016): Wood density of northern red oak and pedunculate oak grown in former brown coal mine in the Czech Republic. BioResources, 11: 9373-9385.
Go to original source... - Zhang S.Y., Owoundi R.E., Nepveu G., Mothe F., Dhôte J.F. (1993): Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence. Canadian Journal of Forest Research, 23: 2587-2593.
Go to original source... - Zobel B.J., van Buijtenen J.P. (1989): Wood Variation: Its Causes and Control. Berlin and Heidelberg, Springer-Verlag: 363.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

ORCID...