J. For. Sci., 2025, 71(6):297-311 | DOI: 10.17221/15/2025-JFS

Climate change and topographic variations affect infestation by Xyleutes ceramica (Walker, 1865) (Lepidoptera: Cossidae) in teak plantations in ThailandOriginal Paper

Thanapol Choochuen1,2, Jiøí Foit ORCID...1, Ponthep Meunpong2, Warong Suksavate3
1 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
3 Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand

The teak bee-hole borer [Xyleutes ceramica (Walker, 1865)] is considered one of the most serious pests of teak (Tectona grandis) in Thailand. The present study investigates climatic and topographic variables affecting the infestation of teak trees by X. ceramica in 10 plantations and predicts the risk of infestation by the species under current and future climatic conditions in Thailand. At each plantation, 48 plots evenly distributed among twelve teak stands were sampled. The infested teak trees in the plots were assessed, and the coordinates of the tree positions were recorded. The maximum entropy (MaxEnt) model was used to assess the effects of environmental factors and predict the occurrence probability of the species using current and projected (2050) climate data based on the Shared Socioeconomic Pathways SSP1-2.6 and SSP5-8.5 scenarios from multiple global climate models. According to our results, high accuracy values [AUC (area under the curve) = 0.852, TSS (true skill statistics) = 0.775] of the model prediction were obtained, and the infestation was found to be driven much more by climate than by topographic characteristics. Above all, X. ceramica was found to prefer moderate temperatures in a highly distinct seasonal climate. Additionally, relatively low amounts of premonsoon rainfall are also found to be favoured by the species. The predicted risk map revealed that the northern region is the core area of X. ceramica infestation in Thailand under current and future climatic conditions, but the severity of infestation is predicted to gradually decrease under the predicted future climatic conditions. Recommendations for management to minimise tree damage caused by X. ceramica are also presented in this study.

Keywords: cossid moth; ecological requirement; environmental factor; global climate change; maximum entropy (MaxEnt); stem borer; Tectona grandis

Received: February 9, 2025; Revised: May 6, 2025; Accepted: May 19, 2025; Prepublished online: June 27, 2025; Published: June 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Choochuen T, Foit J, Meunpong P, Suksavate W. Climate change and topographic variations affect infestation by Xyleutes ceramica (Walker, 1865) (Lepidoptera: Cossidae) in teak plantations in Thailand. J. For. Sci. 2025;71(6):297-311. doi: 10.17221/15/2025-JFS.
Download citation

Supplementary files:

Download file15-2025-JFS_ESM.pdf

File size: 125.11 kB

References

  1. Adam E., Mutanga O., Ismail R. (2013): Determining the susceptibility of Eucalyptus nitens forests to Coryphodema tristis cossid moth occurrence in Mpumalanga, South Africa. International Journal of Geographical Information Science, 27: 1924-1938. Go to original source...
  2. Böhner J., Antoniæ O. (2009): Chapter 8: Land-surface parameters specific to topo-climatology. In: Hengl T., Reuter H.I. (eds.): Developments in Soil Science (Vol. 33). Amsterdam, Elsevier: 195-226. Go to original source...
  3. Chairuangsirikul T. (1999): Study on intensity of damage on teak caused by beehole borer at Mae Gar teak seed orchard, Phayao province. Silvicultural Research Report: 123-136.
  4. Chantraket P., Detyothin C., Suknarin A. (2013): Radar reflectivity derived rain-storm characteristics over northern Thailand. EnvironmentAsia, 6: 24-33.
  5. Cheng W., Kendrick R.C., Guo F., Xing S., Tingley M.W., Bonebrake T.C. (2019): Complex elevational shifts in a tropical lowland moth community following a decade of climate change. Diversity and Distributions, 25: 514-523. Go to original source...
  6. Choochuen T., Foit J., Meunpong P., Suksavate W. (2024): Characteristics of teak trees and stands driving infestations by Xyleutes ceramica (Walker, 1865) (Lepidoptera: Cossidae) in plantations in Thailand. Journal of Applied Entomology, 148: 690-702. Go to original source...
  7. Crimmins T., Gerst K., Huerta D., Marsh R., Posthumus E., Rosemartin A., Switzer J., Weltzin J.F., Coop L., Dietschler N., Herms D.A., Limbu S., Trotter R.T. III., Whitmore M. (2020): Short-term forecasts of insect phenology inform pest management. Annals of the Entomological Society of America, 113: 139-148. Go to original source...
  8. Desmet Q., Ngo-Duc T. (2022): A novel method for ranking CMIP6 global climate models over the southeast Asian region. International Journal of Climatology, 42: 97-117. Go to original source...
  9. Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C.J. (2011): A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43-57. Go to original source...
  10. Eungwijarnpanya S., Hutacharern C., Nakamuta K., Ikeda T. (1990): Bionomics of the teak beehole borer, Xyleutes ceramicus, in northern Thailand: Mating behavior. Thai Journal of Forestry, 9: 196-202.
  11. Fekrat L., Farashi A. (2022): Impacts of climatic changes on the worldwide potential geographical dispersal range of the leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae). Global Ecology and Conservation, 34: e02050. Go to original source...
  12. Fick S.E., Hijmans R.J. (2017): WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315. Go to original source...
  13. García-Robledo C., Kuprewicz E.K., Staines C.L., Erwin T.L., Kress W.J. (2016): Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proceedings of the National Academy of Sciences of the United States of America, 113: 680-685. Go to original source... Go to PubMed...
  14. Gotoh T., Eungwijarnpanya S., Yincharoen S., Choldumrongkul S., Nakamuta K., Pholwicha P., Piananurak P., Hutacharern C. (2007): Emergence, oviposition and larval behaviors in the teak beehole borer (Xyleutes ceramica Wlk.) in northern Thailand (Lepidoptera: Cossidae). Japan Agricultural Research Quarterly, 41: 307-314. Go to original source...
  15. Halsch C.A., Shapiro A.M., Fordyce J.A., Nice C.C., Thorne J.H., Waetjen D.P., Forister M.L. (2021): Insects and recent climate change. roceedings of the National Academy of Sciences of the United States of America, 118: e2002543117. Go to original source... Go to PubMed...
  16. Hannon E., Rodstorm R.A., Brown J., Chong J.M. (2017): Carpenterworm Moth Insect Pest Management in Hybrid Poplars Series. Pullman, Washington State University, Department of Entomology: 7.
  17. Herms D. (2004): Using degree-days and plant phenology to predict pest activity. In: Krischick V., Davidson J. (eds): IPM of Midwest Landscapes. Illinois, University of Illinois: 49-59.
  18. Hill G.M., Kawahara A.Y., Daniels J.C., Bateman C.C., Scheffers B.R. (2021): Climate change effects on animal ecology: Butterflies and moths as a case study. Biological Reviews, 96: 2113-2126. Go to original source... Go to PubMed...
  19. Hijmans R.J., Phillips S., Leathwick J., Elith J., Hijmans M.R.J. (2023): Package 'dismo'. Circles, 9: 1-68.
  20. Horrocks K.J., Zhang J., Haye T., Seehausen M.L., Maggini R., Xian X., Chen J., Nugnes F., Collatz J., Gruber A., Gariepy T.D. (2024): Biology, impact, management and potential distribution of Aromia bungii, a major threat to fruit crops around the world. Journal of Pest Science, 97: 1725-1747. Go to original source...
  21. Hutacharern C., Choldumrongkul S. (1989): A note on the insect pests of multipurpose tree species in Thailand. Journal of Tropical Forest Science, 2: 81-84.
  22. Iqbal Z., Shahid S., Ahmed K., Ismail T., Ziarh G.F., Chung E.S., Wang X. (2021): Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmospheric Research, 254: 105525. Go to original source...
  23. Kaosa-ard A. (1981): Teak (Tectona grandis): Its natural distribution and related factors. Natural History Bulletin of the Siam Society, 29: 55-74.
  24. Khan A.M., Li Q., Saqib Z., Khan N., Habib T., Khalid N., Majeed M., Tariq A. (2022): MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza pine (Pinus gerardiana Wall.) in South Asia. Forests, 13: 715. Go to original source...
  25. Kumar S., Neven L.G., Yee W.L. (2014): Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere, 5: 86. Go to original source...
  26. Kumbula S.T., Mafongoya P., Peerbhay K.Y., Lottering R.T., Ismail R. (2019): Using Sentinel-2 multispectral images to map the occurrence of the cossid moth (Coryphodema tristis) in Eucalyptus nitens plantations of Mpumalanga, South Africa. Remote Sensing, 11: 278. Go to original source...
  27. Ma C.S., Ma G., Pincebourde S. (2021): Survive a warming climate: Insect responses to extreme high temperatures. Annual Review of Entomology, 66: 163-184. Go to original source... Go to PubMed...
  28. Maicher V., Sáfián S., Murkwe M., Przybylowicz L., Janeèek S., Fokam E., Pyrcz T., Tropek R. (2018): Flying between raindrops: Strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecology and Evolution, 8: 12761-12772. Go to original source... Go to PubMed...
  29. Moreno-Ibarra M.A., Villuendas-Rey Y., Lytras M.D., Yáñez-Márquez C., Salgado-Ramírez J.C. (2021): Classification of diseases using machine learning algorithms: A comparative study. Mathematics, 9: 1817. Go to original source...
  30. Nakanishi T., Kaneda T., Nakamuta K. (2016): Effects of temperature on the development and circannual control of pupation in the carpenter moth, Cossus insularis (Lepidoptera: Cossidae), reared on an artificial diet. Applied Entomology and Zoology, 52: 29-35. Go to original source...
  31. Nardi D., Jactel H., Pagot E., Samalens J.C., Marini L. (2022): Drought and stand susceptibility to attacks by the European spruce bark beetle: A remote sensing approach. Agricultural and Forest Entomology, 25: 119-129. Go to original source...
  32. NASA JPL (2020): NASADEM Merged DEM Global 1 arc second (V001). [Data set]. Sioux Falls, NASA EOSDIS Land Processes Distributed Active Archive Center. Available at: https://lpdaac.usgs.gov/products/nasadem_hgtv001/
  33. Netherer S., Panassiti B., Pennerstorfer J., Matthews B. (2019): Acute drought is an important driver of bark beetle infestation in Austrian Norway spruce stands. Frontiers in Forests and Global Change, 2: 39. Go to original source...
  34. Newell F., Ausprey I., Robinson S. (2023): Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Global Change Biology, 29: 308-323. Go to original source... Go to PubMed...
  35. Noda I., Himmapan W. (2014): Erratum to 'Effects of silvicultural alternatives on model-based financial evaluation of teak (Tectona grandis L.) Farm forestry management for small-scale farmers in northeast Thailand'. Open Journal of Forestry, 4: 558-569. Go to original source...
  36. Panyamang A., Duangphakdee O., Rattanawannee A. (2018): Genetic structure of teak beehole borer, Xyleutes ceramicus (Lepidoptera: Cossidae), in northern Thailand. Agriculture and Natural Resources, 52: 66-74. Go to original source...
  37. Pholvicha P., Pianhanuruk P., Hutacharern C. (1992): Natural mortality of the teak beehole borer, (Xyleutes ceramicus Walker at maegar seed orchard, Phayao). Thai Journal of Forestry, 11: 8-15.
  38. R Core Team (2021): R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: http://www.R-project.org
  39. Rattanawannee A., Sangtongpraow B., Noosidum A. (2015): Genetic variation of teak beehole, Xyleutes ceramicus Walker (Lepidoptera: Cossidae), populations from Northern Thailand. In: Proceedings of 53rd Kasetsart University Annual Conference, Bangkok, Feb 3-6, 2015: 488-496.
  40. Sanguansub S., Buranapanichpan S., Beaver R., Saowaphak T., Tanaka N., Kamata N. (2020): Influence of seasonality and climate on captures of wood-boring Coleoptera [Bostrichidae and Curculionidae (Scolytinae and Platypodinae)] using ethanol-baited traps in a seasonal tropical forest of northern Thailand. Journal of Forest Research, 25: 1-9. Go to original source...
  41. Schneider L., Comte V., Rebetez M. (2021): Increasingly favourable winter temperature conditions for major crop and forest insect pest species in Switzerland. Agricultural and Forest Meteorology, 298-299: 108315. Go to original source...
  42. Schneider L., Rebetez M., Rasmann S. (2022): The effect of climate change on invasive crop pests across biomes. Current Opinion in Insect Science, 50: 100895. Go to original source... Go to PubMed...
  43. Shrestha S. (2019): Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3: 74-80. Go to original source...
  44. Skend¾iæ S., Zovko M., ®ivkoviæ I.P., Le¹iæ V., Lemiæ D. (2021): The impact of climate change on agricultural insect pests. Insects, 12: 440. Go to original source... Go to PubMed...
  45. Tang J., Li J., Lu H., Lu F., Lu B. (2019): Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Management Science, 75: 1630-1637. Go to original source... Go to PubMed...
  46. Tasen W., Wiwatwitaya D. (2022): Insect pest management in teak plantations in Thailand. In: Trisurat, Ma H.O., Yanuariadi T., Kant P., Thulasidas P.K. (eds): Teak in Mekong for a Sustainable Future. Bangkok, Yokohama, Kerala: Kasetsart University, International Tropical Timber Organization, TEAKNET: 149-154.
  47. Trisurat Y., Chitechote A., Vongkhamsao V., Hliang Z.H. (2022): Predicted climate change impact on natural teak forests in the Greater Mekong sub-region. In: XV World Forestry Congress, Seoul, May 2-6, 2022: 1-8.
  48. Wylie F.R., Speight M.R. (2012): Tropical forest pests: Ecology, biology and impact. In: Wylie F.R., Speight M.R. (eds): Insect Pests in Tropical Forestry. London, British Library: 91-152. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.