J. For. Sci., 2025, 71(5):237-249 | DOI: 10.17221/10/2025-JFS

Life cycle assessment of bioenergy production from short-rotation coppice plantation in HungaryOriginal Paper

Budi Mulyana ORCID...1, Andrea Vityi ORCID...2, András Polgár ORCID...2
1 Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
2 Faculty of Forestry, University of Sopron, Sopron, Hungary

A short-rotation coppice (SRC) system for bioenergy production is vital to supporting climate change mitigation by absorbing CO2 from the atmosphere and storing carbon as biomass. However, SRC's operation also released some greenhouse gas emissions, affecting the environment. This study aims to assess the potential environmental impacts through the life cycle assessment method in bioenergy production from the SRC system. Data was collected through a literature review and database, and the impact categories were then analysed using Sphera LCA for Experts Education License software (Version 9.2.1.68, 2020). In managing plantations for bioenergy production, plants during one rotation (15 years) will be harvested every 3 years (harvesting cycle). Then, there will be five harvesting cycles during a single rotation. The result showed that the first cycle had the highest environmental impacts because the inputs (fuel, lubricant, electricity, fertiliser, and pesticides) in this cycle were higher than others. The highest contribution comes from the first and end cycles as 3 200 and 2 700 kg CO2 eq, respectively. Meanwhile, cycles 2, 3, and 4 contribute to the carbon footprint as 2 500 kg CO2 eq for each cycle. Based on input, fuel consumption has resulted in higher environmental impacts than lubricants, fertilisers, and electricity consumption. In conclusion, energy consumption (fuel, lubricant, and electricity) and agrochemicals (fertilisers and pesticides) have released emissions and affected the environment. In the future, fuel and agrochemical consumption should be reduced to minimise the negative environmental impacts in the short-rotation coppice system.

Keywords: carbon footprint; climate change mitigation; environmental impacts; fast-growing species; forest plantation

Received: January 18, 2025; Revised: March 7, 2025; Accepted: March 24, 2025; Prepublished online: May 28, 2025; Published: May 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mulyana B, Vityi A, Polgár A. Life cycle assessment of bioenergy production from short-rotation coppice plantation in Hungary. J. For. Sci. 2025;71(5):237-249. doi: 10.17221/10/2025-JFS.
Download citation

References

  1. Bacenetti J., Fusi A., Negri M., Guidetti R., Fiala M. (2014): Environmental assessment of two different crop systems in terms of biomethane potential production. Science of the Total Environment, 466-467: 1066-1077. Go to original source... Go to PubMed...
  2. Bacenetti J., Bergante S., Facciotto G., Fiala M. (2016a): Woody biofuel production from short rotation coppice in Italy: Environmental-impact assessment of different species and crop management. Biomass and Bioenergy, 94: 209-219. Go to original source...
  3. Bacenetti J., Pessina D., Fiala M. (2016b): Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations. Science of the Total Environment, 541: 210-217. Go to original source... Go to PubMed...
  4. Barbara G. (2018): Energetikai faültetvények környezeti hatásainak vizsgálata. [MSc Thesis]. Sopron, University of Sopron. (in Hungarian)
  5. Bergante S., Manzone M., Facciotto G. (2016): Biomass and bioenergy alternative planting method for short rotation coppice with poplar and willow. Biomass and Bioenergy, 87: 39-45. Go to original source...
  6. Bjørn A., Moltesen A., Laurent A., Owsianiak M., Corona A., Birkved M., Hauschild M.Z. (2018): Life cycle inventory analysis. In: Hauschild M., Rosenbaum R., Olsen S. (eds): Life Cycle Assessment. Cham, Springer: 117-165. Go to original source...
  7. Cantamessa S., Rosso L., Giorcelli A., Chiarabaglio P.M. (2022): The environmental impact of poplar stand management: A life cycle assessment study of different scenarios. Forests, 13: 464. Go to original source...
  8. De Francesco F., Magagnotti N., Kováè B., Heger P., Heilig D., Heil B., Kovács G., Zemánek T., Spinelli R. (2022): Integrated harvesting of medium rotation hybrid poplar plantations: Systems compared. Forests, 13: 1873. Go to original source...
  9. Dijkman T.J., Basset-Mens C., Antón A., Núñez M. (2018): LCA of food and agriculture. In: Hauschild M., Rosenbaum R., Olsen S. (eds): Life Cycle Assessment. Cham, Springer: 723-754. Go to original source...
  10. DG Ener (2012): The Report on Greenhouse Gas Emissions from the Cultivation of Agricultural Crops Used as Raw Materials for Biofuels Production. Sofia, Directorate-General for Energy, European Commission: 21. Available at: https://energy.ec.europa.eu/system/files/2023-09/19_2_bulgaria_en.pdf (accessed Mar 25, 2024).
  11. Durojaye O., Laseinde T., Oluwafemi I. (2020): A descriptive review of carbon footprint. In: Ahram T., Karwowski W., Pickl S., Taiar R. (eds): Advances in Intelligent Systems and Computing. Cham, Springer: 960-968. Go to original source...
  12. Eisenbies M.H., Volk T.A., DeSouza D., Hallen K., Stanton B., Espinoza J., Himes A., Shuren R., Stonex R., Summers B., Zerpa J. (2021): An assessment of the harvesting and fuel performance of a single-pass cut-and-chip harvester in commercial-scale short-rotation poplar crops as influenced by crop and weather conditions. Biomass and Bioenergy, 149: 106075. Go to original source...
  13. Fernández M., Barro R., Pérez J., Ciria P. (2020): Production and composition of biomass from short rotation coppice in marginal land: A 9-year study. Biomass and Bioenergy, 134: 105478. Go to original source...
  14. Ferreira M.C., Santos R.C., dos Castro R.V.O., Carneiro A.C.O., Silva G.G.C., da Castro A.F.N.M., Costa S.E.L., Pimenta A.S. (2017): Biomass and energy production at short rotation eucalyptus clonal plantations deployed in Rio Grande Do Norte. Revista Árvore, 41, 1-7. Go to original source...
  15. González-García S., Bacenetti J., Murphy R.J., Fiala M. (2012a): Present and future environmental impact of poplar cultivation in the Po Valley (Italy) under different crop management systems. Journal of Cleaner Production, 26: 56-66. Go to original source...
  16. González-García S., Mola-Yudego B., Dimitriou I., Aronsson P., Murphy R. (2012b): Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Science of the Total Environment, 421-422, 210-219. Go to original source... Go to PubMed...
  17. Hart Q.J., Tittmann P.W., Bandaru V., Jenkins B.M. (2015): Modeling poplar growth as a short rotation woody crop for biofuels in the Pacific Northwest. Biomass and Bioenergy, 79: 12-27. Go to original source...
  18. IPCC (Intergovernmental Panel on Climate Change ) (2006): IPCC Guideline for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K (eds). Hayama, IGES. Available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/
  19. Johnston C.R., Walsh L.R., McCracken A.R. (2022): Effect of two vs. three year harvest intervals on yields of Short Rotation Coppice (SRC) willow. Biomass and Bioenergy, 156: 106303. Go to original source...
  20. Király É., Börcsök Z., Kocsis Z., Németh G., Polgár A., Borovics A. (2022): Carbon sequestration in harvested wood products in Hungary an estimation based on the IPCC 2019 refinement. Forests, 13: 1809. Go to original source...
  21. Klein D., Wolf C., Schulz C., Weber-Blaschke G. (2015): 20 years of life cycle assessment (LCA) in the forestry sector: State of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment, 20: 556-575. Go to original source...
  22. Koch D., Friedl A., Mihalyi B. (2023): Influence of different LCIA methods on an exemplary scenario analysis from a process development LCA case study. Environment, Development and Sustainability, 25: 6269-6293. Go to original source...
  23. Kouchaki-Penchah H., Sharifi M., Mousazadeh H., Zarea-Hosseinabadi H. (2016): Life cycle assessment of medium-density fiberboard manufacturing process in Islamic Republic of Iran. Journal of Cleaner Production, 112: 351-358. Go to original source...
  24. Krzy¿aniak M., Stolarski M.J., Warmiñski K., Rój E., Ty¶kiewicz K., Olba-Ziêty E. (2023): Life cycle assessment of poplar biomass for high value products and energy. Energies, 16: 7287. Go to original source...
  25. Kupfer T., Baitz M., Colodel C., Kokborg M., Scholl S., Rudolf M., Bos U., Bosch F., Gonzalez M., Schuller O., Hengstler J., Stoffregen A., Thylmann D., Koffler C. (2021): GaBi Databases & Modelling Principles. Available at: https://sphera.com/wp-content/uploads/2020/04/Modeling-Principles-GaBi-Databases-2021.pdf (accessed Apr 26, 2024).
  26. Langhof M., Schmiedgen A. (2023): 13 years of biomass production from three poplar clones in a temperate short-rotation alley cropping agroforestry system. Biomass and Bioenergy, 175: 106853. Go to original source...
  27. Livingstone D., Smyth B.M., Lyons G., Foley A.M., Murray S.T., Johnston C. (2022): Life cycle assessment of a short-rotation coppice willow riparian buffer strip for farm nutrient mitigation and renewable energy production. Renewable and Sustainable Energy Reviews, 158: 112154. Go to original source...
  28. Lovarelli D., Fusi A., Pretolani R., Bacenetti J. (2018): Delving the environmental impact of roundwood production from poplar plantations. Science of the Total Environment, 645: 646-654. Go to original source... Go to PubMed...
  29. Manzone M., Calvo A. (2016): Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy. Renewable Energy, 86: 675-681. Go to original source...
  30. Martínez-Blanco J., Inaba A., Finkbeiner M. (2015): Scoping organizational LCA - Challenges and solutions. The International Journal of Life Cycle Assessment, 20: 829-841. Go to original source...
  31. Miranda T., Montero I., Sepúlveda F.J., Arranz J.I., Rojas C.V., Nogales S. (2015): A review of pellets from different sources. Materials, 8: 1413-1427. Go to original source... Go to PubMed...
  32. Morales-Vera R., Vásquez-Ibarra L., Scott F., Puettmann M., Gustafson R. (2022): Life cycle assessment of bioethanol production: A case study from poplar biomass growth in the U.S. Pacific Northwest. Fermentation, 8: 734. Go to original source...
  33. Mulyana B., Polgár A., Vityi A. (2023): Research trends in the environmental assessment of poplar plantations in Hungary: A bibliometric analysis. Ecocycles, 9: 23-32. Go to original source...
  34. Mulyana B., Polgár A., Vityi A. (2024). Forest carbon modeling in poplar and black locust short rotation coppice plantation in Hungary. Jurnal Sylva Lestari, 12: 324-337. Go to original source...
  35. Oliveira N., del Río M., Forrester D.I., Rodríguez-Soalleiro R., Pérez-Cruzado C., Cañellas I., Sixto H. (2018): Mixed short rotation plantations of Populus alba and Robinia pseudoacacia for biomass yield. Forest Ecology and Management, 410: 48-55. Go to original source...
  36. Oneil E., Puettmann M.E. (2017): A life-cycle assessment of forest resources of the Pacific Northwest, USA. Forest Products Journal, 67: 316-330. Go to original source...
  37. Perdomo E.A.E., Schwarzbauer P., Fürtner D., Hesser F. (2021): Life cycle assessment of agricultural wood production-methodological options: A literature review. BioEnergy Research, 14: 492-509. Go to original source...
  38. Pereira S., Costa M. (2017): Short rotation coppice for bioenergy: From biomass characterization to establishment - A review. Renewable and Sustainable Energy Reviews, 74: 1170-1180. Go to original source...
  39. Polgár A. (2023): Carbon footprint and sustainability assessment of wood utilisation in Hungary. Environment, Development and Sustainability, 26: 24495-24519. Go to original source...
  40. Polgár A., Horváth A., Mátyás K.S., Horváth A.L., Rumpf J., Vágvölgyi A. (2018): Carbon footprint of different harvesting work systems in short rotation energy plantations. Acta Silvatica et Lignaria Hungarica, 14: 113-126. Go to original source...
  41. Polgár A., Kovács Z., Fodor V.E., Bidló A. (2019): Environmental life-cycle assessment of arable crop production technologies compared to different harvesting work systems in short rotation energy plantations. Acta Silvatica et Lignaria Hungarica, 15: 55-68. Go to original source...
  42. Prinz R., Spinelli R., Magagnotti N., Routa J., Asikainen A. (2018): Modifying the settings of CTL timber harvesting machines to reduce fuel consumption and CO2 emissions. Journal of Cleaner Production, 197: 208-217. Go to original source...
  43. Puettmann M., Sahoo K., Wilson K., Oneil E. (2020): Life cycle assessment of biochar produced from forest residues using portable systems. Journal of Cleaner Production, 250: 119564. Go to original source...
  44. Rodrigues A.M., Costa M.M.G., Nunes L.J.R. (2021): Short rotation woody coppices for biomass production: An integrated analysis of the potential as an energy alternative. Current Sustainable/Renewable Energy Reports, 8: 70-89. Go to original source...
  45. Sahoo K., Bergman R., Alanya-Rosenbaum S., Gu H., Liang S. (2019): Life cycle assessment of forest-based products: A review. Sustainability, 11: 4722. Go to original source...
  46. Schiberna E., Borovics A., Benke A. (2021): Economic modelling of poplar short rotation coppice plantations in Hungary. Forests, 12: 623. Go to original source...
  47. Schweier J., Magagnotti N., Labelle E.R., Athanassiadis D. (2019): Sustainability impact assessment of forest operations: A review. Current Forestry Reports, 5: 101-113. Go to original source...
  48. Siregar K., Tambunan A.H., Irwanto A.K., Wirawan S.S., Araki T. (2015): A comparison of life cycle assessment on oil palm (Elaeis guineensis Jacq.) and physic nut (Jatropha curcas Linn.) as feedstock for biodiesel production in Indonesia. Energy Procedia, 65: 170-179. Go to original source...
  49. Spinelli R., Moura A.C.A. (2019): Decreasing the fuel consumption and CO2 emissions of excavator-based harvesters with a machine control system. Forests, 10: 43. Go to original source...
  50. Spinelli R., Magagnotti N., De Francesco F., Kováè B., Heger P., Heilig D., Heil B., Kovács G., Zemánek T. (2022): Cut-to-length harvesting options for the integrated harvesting of the European industrial poplar plantations. Forests, 13: 1478. Go to original source...
  51. ©tochlová P., Novotná K., Costa M., Rodrigues A. (2019): Biomass production of poplar short rotation coppice over five and six rotations and its aptitude as a fuel. Biomass and Bioenergy, 122: 183-192. Go to original source...
  52. Stolarski M.J., Stachowicz P. (2023): Black locust, poplar or willow? Yield and energy value in three consecutive four-year harvest rotations. Industrial Crops and Products, 193: 116197. Go to original source...
  53. Vanbeveren S.P.P., Spinelli R., Eisenbies M., Schweier J., Mola-Yudego B., Magagnotti N., Acuna M., Dimitriou I., Ceulemans R. (2017): Mechanised harvesting of short-rotation coppices. Renewable and Sustainable Energy Reviews, 76: 90-104. Go to original source...
  54. Wackernagel M., Rees W. (1996): Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island, New Society Publishers: 176.
  55. Wang Z., Yan W., Peng Y., Wan M., Farooq T.H., Fan W., Lei J., Yuan C., Wang W., Qi Y., Chen X. (2023): Biomass production and carbon stocks in poplar-crop agroforestry chronosequence in subtropical central China. Plants, 12: 2451. Go to original source... Go to PubMed...
  56. Yousaf A., Hussain M., Ahmad S., Riaz A., Shaukat S., Shah S.W.A., Mishr R.S., Akram S., Majeed M., Tabassum A., Amin M., Jabeen F. (2024): Environmental sustainability assessment of softwood and hardwood seedlings production in forest nurseries: A case study from Pakistan. Brazilian Journal of Biology, 84: e260615. Go to original source... Go to PubMed...
  57. Zhang X., Zhang W., Xu D. (2020): Life cycle assessment of complex forestry enterprise: A case study of a forest-fiberboard integrated enterprise. Sustainability, 12: 4147. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.