J. For. Sci., 2025, 71(3):113-123 | DOI: 10.17221/95/2024-JFS

Hydraulic sizing of forest road pipe culvertsOriginal Paper

Karel Zlatuška ORCID...1, Petr Kupec ORCID...2, Martin Duchan ORCID...1, Alena Tichá ORCID...1, Jan Deutscher ORCID...2
1 Department of Forestry Technologies and Construction, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Department of Landscape Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

This article presents guidelines for assessing the optimal dimensions of forest road pipe culverts, based on input of actual and experimental data to standard engineering techniques. In doing so, we assess the need for (i) changes in the parametrisation of inputs (i.e. culvert micro-catchment dimensions, rainfall and resultant culvert flow, and culvert flow rates during culvert hydraulic dimensioning), and (ii) the need to redesign culvert outlets in relation to flow speed. Our results demonstrate that values for most inputs presently used under current technical practice for forest road pipe culvert sizing are significantly higher than those achieved under experimental conditions. The data on outlet flow velocities strongly suggests that strengthening of culvert outlet aprons will be crucial for their future operation.

Keywords: culvert dimension precipitation parameters; culvert flow velocity; forest culvert catchment area; outflow strengthening

Received: November 18, 2024; Revised: December 4, 2024; Accepted: December 16, 2024; Prepublished online: March 18, 2025; Published: March 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zlatuška K, Kupec P, Duchan M, Tichá A, Deutscher J. Hydraulic sizing of forest road pipe culverts. J. For. Sci. 2025;71(3):113-123. doi: 10.17221/95/2024-JFS.
Download citation

References

  1. Balkham M., Fosebeary C., Kitchen C., Ricard C. (2010): Culvert Design and Operation Guide. London, CIRIA: 382.
  2. Beneš J. (1986): Předpoklady zpřístupnění lesa. Folia Universitatis Agriculturae, Section A. Brno, Vysoká škola zemědělská: 66. (in Czech with an English and Russian summary)
  3. Crhová L., Bližňák V., Kašpar M., Müller M., Svoboda V., Šercl P., Štěpánek P. (2024): Projekt PERUN. Predikce, hodnocení a výzkum citlivosti vybraných systémů, vlivu sucha a změny klimatu v Česku. HC6 - Zpřesnění informací o hydrologickém režimu. DC 6.1 Návrhové hodnoty srážek. Souhrnná výzkumná zpráva. Výstup SS02030040-V46. Available at: https://www.perun-klima.cz/results.html (in Czech)
  4. Gillespie N., Unthank A., Campbell L., Anderson P., Gubernick R., Weinhold M., Cenderelli D., Austin B., Kinley D., Wells S., Rowan J., Orvis C., Hudy M., Bowden A., Singler A., Fretz E., Levine J., Kirn R. (2014): Flood effects on road-stream crossing infrastructure: Economic and ecological benefits of stream simulation designs. Fisheries, 39: 62-76. Go to original source...
  5. Hanák K., Kupčák V., Skoupil J., Šálek J., Tlapák V., Zuna J. (2008): Stavby pro plnění funkce lesa. Prague, Informační centrum ČKAIT: 304. (in Czech)
  6. Horský F., Dvořák D. (2014): TP 83 Odvodnění pozemních komunikací. Technické podmínky. Prague, Ministry of Transport of the Czech Republic: 60. (in Czech)
  7. Jacobson R.B., Primm A.T. (1997): Historical Land-use Changes and Potential Effects on Stream Disturbance in the Ozark Plateaus, Missouri. U.S. Geological Survey Water-Supply Paper 2484. Denver, U.S. Geological Survey: 95.
  8. Kastridis A. (2020): Impact of forest roads on hydrological processes. Forests, 11: 1201. Go to original source...
  9. Kavka P., Kašpar M., Crhová L., Pavel M., Müller M., Bližňák V., Hulec F., Strouhal L., Landa M., Weyskrabová L., Kubát J.F., Stehlík M., Pecha M., Svoboda V. (2023): Krátkodobé srážky pro hydrologické modelování a navrhování drobných vodohospodářských staveb v krajině. Certifikovaná metodika č. 2/2023/SPU/O. Prague, Czech Technical University in Prague, Institute of Atmospheric Physics CAS, Czech Hydrometeorological Institute, Sweco Hydroprojekt: 69. (in Czech)
  10. Keller G.J., Sherar J. (2003): Low-volume Roads Engineering: Best Management Practices Field Guide. Washington, US Agency for International Development (USAID): 169.
  11. Krešl J. (1973): Základy hydrologie a hydrauliky odvodňovacích objektů. In: Makovník Š., Jurík Ľ., Beneš J., Kompan F. (eds): Inžinierske stavby lesnícke. Bratislava, Príroda: 710. (in Slovak/Czech).
  12. Kunštátský J. (1956): Hydraulické výpočty propustků a mostů. Prague, Státní nakladatelství technické literatury: 48. (in Czech)
  13. Kupec P., Deutscher J., Hemr O., Zlatuška K., Čech P. (2023): Vsakovací zařízení na lesní dopravní síti a jejich funkčnost. Zprávy lesnického výzkumu, 68: 116-125. (in Czech) Go to original source...
  14. Lagasse P.F., Schall J.D., Johnson F. (1995): Stream Stability at Highway Structures. Hydraulic Engineering Circular 20 (HEC-20). FHWA HI-96-032. Washington, DC, U.S. Department of Transportation, Federal Highway Administration: 144.
  15. Lohnes R.A., Gu R.R., McDonald T., Jha M.K. (2001): Low water stream crossings: Design and construction recommendations. Ames, Center for Transportation Research and Education, Iowa State University: 55.
  16. Lydecker A. (1973): Use of gabions for low water crossings on primitive or secondary forest roads. Engineering Technical Information Series, Field Notes, Vol. 5, No. 5 and 6, May-June 1973. Washington, DC: U.S. Department of Agriculture, Forest Service: 13-16.
  17. Mattas D. (2014): Výpočet průtoku v otevřených korytech. Práce a studie 205. Prague, Masaryk Water Research Institute: 110. (in Czech)
  18. Montgomery D.R. (1994): Road surface drainage, channel initiation, and slope instability. Water Resource Research, 30: 1925-1932. Go to original source...
  19. Motayed A.K., Chang F.M., Mukherjee D.K. (1982): Design and Construction of Low Water Stream Srossings. Report No. FHWA/RD-82/163. Washington, DC, U.S. Department of Transportation, Federal Highway Administration: 23.
  20. Mukherjee S., Panda S., Amatya D.M., Dobre M., Campbell J.L., Lew R., Caldwell P., Elder K., Grace J.M., Johnson S.L. (2015): Hydro-geomorphological assessment of culvert vulnerability to flood-induced soil erosion using an ensemble modeling approach. Environmental Modelling & Software, 183: 106243. Go to original source...
  21. Normann J.M., Houghtalen R.J., Johnson W.J. (1985): Hydraulic Design of Highway Culverts. Hydraulic Design Series 5. FHWA-NHI-01-020. Washington, DC, U.S. Department of Transportation, Federal Highway Administration: 376.
  22. Šamaj F., Valovič Š., Brázdil R. (1985): Denné úhrny zrážok s mimoriadnou výdatnosťou v ČSSR v období 1901-1980. In: Šamaj F. (ed.): Zborník prác Slovenského hydrometeorologického ústavu. Bratislava, ALFA: 9. (in Slovak)
  23. Schall J.D., Richardson E.V., Morris J.L. (2001): Introduction to Highway Hydraulics. Hydraulic Design Series No. 4., Pub. No. FHWA-NHI-01-019. U.S. Washington, DC, Department of Transportation, Federal Highway Administration: 214.
  24. Schall J.D., Thompson P.L., Zerges S.M., Kilgore R.T., Morris J.L. (2012): Hydraulic Design of Highway Culverts. 3rd Ed. FHWA-HIF-12-026 HDS 5. Washington, DC, U.S. Department of Transportation, Federal Highway Administration: 323.
  25. Sereda O. (1982): Lesnické stavby II: Objekty na lesních cestách. Prague, SPN: 193. (in Czech)
  26. Soulis K.X., Dercas N., Papadaki C. (2015): Effects of forest roads on the hydrological response of a small-scale mountain watershed in Greece. Hydrological Processes, 29: 1772-1782. Go to original source...
  27. Taylor S.E., Rummer R.B., Yoo K.H. (1999): What we know and don't know about water quality at stream crossings. Journal of Forestry, 97: 12-17. Go to original source...
  28. Tomek J., Panáček J., Nečas R., Koláček J., Veselý J., Picka D., Dubrovský J., Balvín P., Benešová M. (2012): Technické podmínky TP 232: Propustky a mosty malých rozpětí. Prague, Ministry of Transport of the Czech Republic: 68. (in Czech)
  29. Truhlar A.M., Marjerison R.D., Gold D.F., Watkins L., Archibald J.A., Lung M.E., Meyer A., Walter M.T. (2020): Rapid remote assessment of culvert flooding risk. Journal of Sustainable Water in the Built Environment, 6: 0602001. Go to original source...
  30. U.S. Department of Transportation, Federal Highway Administration (1983): Hydraulic Design of Energy Dissipators for Culverts and Channels. Hydraulic Engineering Circular No. 14, FHWA EPD-86-110. Washington, DC, U.S. Department of Transportation, Federal Highway Administration: 287.
  31. U.S. Department of Transportation, Federal Highway Administration (2003): Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects: FP 03-US Customary Units. FHWA-FLH-03-002. Washington, DC, U.S. Department of Transportation, Federal Highway Administration: 700.
  32. Ziegler A.D., Giambelluca T.W. (1997): Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand. Journal of Hydrology, 196: 204-229. Go to original source...
  33. Zlatuška K., Bystrický R., Ježek J., Natov P., Sekanina A., Tománek J. (2020): Technická doporučení pro projektování lesní dopravní sítě. Prague, Ministry of Agriculture of the Czech Republic: 124. (in Czech)
  34. Zuna J. (2008): Hrazení bystřin. Prague, Czech Technical University in Prague: 180. (in Czech)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.