J. For. Sci., 2025, 71(3):124-137 | DOI: 10.17221/92/2024-JFS

Impact of technical water retention on European beech (Fagus sylvatica L.) resilience and growth dynamicsOriginal Paper

Zdeněk Vacek1, Ivana Tomášková1, Zdeněk Fuchs1, Václav Šimůnek1, Stanislav Vacek1, Jan Cukor1,2, Lukáš Bílek1, Josef Gallo1, Karel Zlatuška1, Martin Duchan1
1 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Forestry and Game Management Research Institute, Jíloviště-Strnady, Czech Republic

Global climate change (GCC) is putting increasing pressure on forest ecosystems, leading to more frequent disturbances such as pest outbreaks and other climate-related stressors, all of which threaten forest stability. This study examines how different technical water retention measures (infiltration pits) can enhance the resilience of European beech (Fagus sylvatica L.) to these climatic challenges, focusing on their impact on radial growth, sap flow, and acclimatisation to moisture conditions at two sites in Czechia (430–440 m a.s.l.). Three treatments were compared: a water infiltration pit under a culvert mouth, an infiltration pit without a culvert and a control plot without a technical solution. Results showed that maximum daily transpiration rates of beech ranged between 90–120 L per day. Air temperature had a stronger influence on beech radial growth than precipitation, particularly at the waterlogged sites. The lowest radial growth occurred in the treatment involving a water infiltration pit under a culvert mouth, while treatments with an infiltration pit without a culvert demonstrated notable seasonal stem shrinkage and swelling (tree water deficit – TWD), especially in early spring. On the other hand, no differences were found between the three treatments including the control variant in the maximum growth or the context of minimum TWD. In conclusion, these technical measures had limited or short-term effects on the growth and physiological processes of European beech. Despite the high costs of implementation, sap flow and dendrochronological measurements do not support the construction of infiltration pits as a means of improving water retention in forest ecosystems.

Keywords: climate change; forest-water management; infiltration pits; radial growth; sap flow

Received: November 8, 2024; Revised: December 13, 2024; Accepted: December 17, 2024; Prepublished online: March 27, 2025; Published: March 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vacek Z, Tomášková I, Fuchs Z, Šimůnek V, Vacek S, Cukor J, et al.. Impact of technical water retention on European beech (Fagus sylvatica L.) resilience and growth dynamics. J. For. Sci. 2025;71(3):124-137. doi: 10.17221/92/2024-JFS.
Download citation

References

  1. Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H.T., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.H., Allard G., Running S.W., Semerci A., Cobb N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660-684. Go to original source...
  2. Anderegg W.R., Kane J.M., Anderegg L.D. (2013): Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3: 30-36. Go to original source...
  3. Basile S., Stříbrská B., Kalyniukova A., Hradecký J., Synek J., Gershenzon J., Jirošová A. (2024): Physiological and biochemical changes of Picea abies (L.) during acute drought stress and their correlation with susceptibility to Ips typographus (L.) and I. duplicatus (Sahlberg). Frontiers in Forests and Global Change, 7: 1436110. Go to original source...
  4. Bílek L., Remeš J., Zahradník D. (2009): Natural regeneration of senescent even-aged beech (Fagus sylvatica L.) stands under the conditions of central Bohemia. Journal of Forest Science, 55: 145-155. Go to original source...
  5. Bílek L., Remeš J., Podrázský V., Rozenbergar D., Diaci J., Zahradník D. (2014): Gap regeneration in near-natural European beech forest stands in Central Bohemia - The role of heterogeneity and micro-habitat factors. Dendrobiology, 71: 59-71. Go to original source...
  6. Bosela M., Lukac M., Castagneri D., Sedmák R., Biber P., Carrer M., Konôpka B., Nola P., Nagel T.A., Popa I., Roibu C.C., Svoboda M., Trotsiuk V., Büntgen U. (2018): Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Science of the Total Environment, 615: 1460-1469. Go to original source... Go to PubMed...
  7. Bouriaud O., Bréda N., Dupouey J.L., Granier A. (2005): Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Canadian Journal of Forest Research, 35: 2920-2933. Go to original source...
  8. Brang P., Spathelf P., Larsen J.B., Bauhus J., Boncčìna A., Chauvin C., Drössler L., García-Güemes C., Heiri C., Kerr G., Lexer M.J., Mason B., Mohren F., Mühlethaler U., Nocentini S., Svoboda M. (2014): Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry: An International Journal of Forest Research, 87: 492-503. Go to original source...
  9. Brunner I., Herzog C., Dawes M.A., Arend M., Sperisen C. (2015): How tree roots respond to drought. Frontiers in Plant Science, 6: 547. Go to original source... Go to PubMed...
  10. Bunn A.G. (2010): Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28: 251-258. Go to original source...
  11. Bunn A., Korpela M., Biondi F., Campelo F., Mérian P., Qeadan F., Zang C., Pucha-Cofrep D., Wernicke J. (2018a): An Introduction to dplR. Vienna, R Foundation for Statistical Computing: 16.
  12. Bunn A., Mikko K., Biondi F., Campelo F., Merian P., Qeadan F., Zang C., Pucha-Cofrep D., Wernicke J. (2018b): Dendrochronology Program Library in R. R Package Version 1.6.8. Vienna, R Foundation for Statistical Computing.
  13. Čermák J., Kučera J., Nadezhdina N. (2004): Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18: 529-546. Go to original source...
  14. Černý J., Pokorný R., Haninec P., Bednář P. (2019): Leaf area index estimation using three distinct methods in pure deciduous stands. Journal of Visualized Experiments, 150: e59757. Go to original source...
  15. Černý J., Haninec P., Pokorný R. (2020): Leaf area index estimated by direct, semi-direct, and indirect methods in European beech and sycamore maple stands. Journal of Forestry Research, 31: 827-836. Go to original source...
  16. Černý J., Špulák O., Sýkora P., Novosadová K., Kadlec J., Kománek M. (2024): The significance of European beech in Central Europe in the period of climate change: An overview of current knowledge. Reports of Forestry Research/Zprávy lesnického výzkumu, 69: 74-88. (in Czech) Go to original source...
  17. Chang H.K., Tan Y.C., Lai J.S., Pan T.Y., Liu T.M., Tung C.P. (2013): Improvement of a drainage system for flood management with assessment of the potential effects of climate change. Hydrological Sciences Journal, 58: 1581-1597. Go to original source...
  18. Chen Z., Li S., Wan X., Liu S. (2022): Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 13: 926535. Go to original source... Go to PubMed...
  19. CHMI (2024): Měsíční a roční data dle zákona 123/1998 Sb. Prague, Czech Hydrometeorological Institute. Available at: https://www.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-data-dle-z.-123-1998-Sb (in Czech)
  20. Cook E.R., Shiyatov S.G., Mazepa V.S. (1990): Estimation of the mean chronology. In: Cook E.R., Kairiukstis L.A. (eds.): Methods of Dendrochronology Applications. New York, Columbia University: 97-162. Go to original source...
  21. D'Amato A.W., Bradford J.B., Fraver S., Palik B.J. (2011): Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. Forest Ecology and Management, 262: 803-816. Go to original source...
  22. Del Río M., Pretzsch H., Ruiz-Peinado R., Jactel H., Coll L., Löf M., Aldea J., Ammer C., Avdagić A., Barbeito I. et al. (2022): Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect. Journal of Applied Ecology, 59: 2730-2741. Go to original source...
  23. Ellison D., Morris C.E., Locatelli B., Sheil D., Cohen J., Murdiyarso D., Gutierrez V., Noordwijk M., Creed I.F., Pokorny J., Gaveau D., Spracklen D.V., Tobella A.B., Ilstedt U., Teuling A.J., Gebrehiwot S.G., Sands D.C., Muys B., Verbist B., Springgay E., Sugandi Y., Sullivan C.A. (2017): Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43: 51-61. Go to original source...
  24. Fuchs Z., Vacek Z., Vacek S., Cukor J., Šimůnek V., Štefančík I., Brabec P., Králíček I. (2024): European beech (Fagus sylvatica L.): A promising candidate for future forest ecosystems in Central Europe amid climate change. Central European Forestry Journal, 70: 62-76. Go to original source...
  25. Giagli K., Vavrčík H., Tsalagkas D., Černý J., Leugner J., Hacurová J., Gryc V. (2023): Effect of different stand densities on xylem and phloem formation in Norway spruce plantations. IAWA Journal, 45: 227-242. Go to original source...
  26. Kalantari Z., Folkeson L. (2013): Road drainage in Sweden: Current practice and suggestions for adaptation to climate change. Journal of Infrastructure Systems, 19: 147-156. Go to original source...
  27. Keenan R.J. (2015): Climate change impacts and adaptation in forest management: A review. Annals of Forest Science, 72: 145-167. Go to original source...
  28. Kraft G. (1884): Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover, Klindworth: 148. (in German)
  29. Králíček I., Vacek Z., Vacek S., Remeš J., Bulušek D., Král J., Štefančík I., Putalová T. (2017): Dynamics and structure of mountain autochthonous spruce-beech forests: Impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77: 119-137. Go to original source...
  30. Kupec P., Deutscher J., Hemr O., Zlatuška K., Čech P. (2023): Functionality of infiltration pits on forest transportation network. Reports of Forestry Research/Zprávy lesnického výzkumu, 68: 116-125. (in Czech) Go to original source...
  31. Leuschner C. (2020): Drought response of European beech (Fagus sylvatica L.)-A review. Perspectives in Plant Ecology, Evolution and Systematics, 47: 125576. Go to original source...
  32. Leuschner C., Ellenberg H. (2021): Ecology of Central European Forests: Vegetation, Environment, and Management. Cham, Springer: 972.
  33. Lindenmayer D.B., Likens G.E., Andersen A., Bowman D., Bull C.M., Burns E., Dickman C.R., Hoffmann A.A., Keith D.A., Liddell M.J., Lowe A.J., Metcalfe D.J., Phinn S.R., Russell-Smith J., Thurgate N., Wardle G.M. (2012): Value of long-term ecological studies. Austral Ecology, 37: 745-757. Go to original source...
  34. Lindner M., Fitzgerald J.B., Zimmermann N.E., Reyer C., Delzon S., van Der Maaten E., Schelhaas M.J., Lasch P., Eggers J., Maaten-Theunissen M., Suckow F., Psomas A., Poulter B., Hanewinkel M. (2014): Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146: 69-83. Go to original source... Go to PubMed...
  35. Mäkinen H., Nöjd P., Kahle H.P., Neumann U., Tveite B., Mielikäinen K., Röhle H., Spiecker H. (2002): Radial growth variation of Norway spruce [Picea abies (L.) Karst.] across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 171: 243-259. Go to original source...
  36. Mäkinen H., Nöjd P., Saranpää P. (2003): Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology, 23: 959-968. Go to original source... Go to PubMed...
  37. Martinez del Castillo E., Zang C.S., Buras A., Hacket-Pain A., Esper J., Serrano-Notivoli R., Hartl C., Weigel R., Klesse S., de Dios V.R., Scharnweber T. et al. (2022): Climate-change-driven growth decline of European beech forests. Communications Biology, 5: 163. Go to original source... Go to PubMed...
  38. Matula R., Knířová S., Vítámvás J., Šrámek M., Kníř T., Ulbrichová I., Svoboda M., Plichta R. (2023): Shifts in intra-annual growth dynamics drive a decline in productivity of temperate trees in Central European forest under warmer climate. Science of the Total Environment, 905: 166906. Go to original source... Go to PubMed...
  39. Pretzsch H., Biber P., Schütze G., Uhl E., Rötzer T. (2014): Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications, 5: 4967. Go to original source... Go to PubMed...
  40. Pretzsch H., Schütze G., Biber P. (2018): Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. Forest Ecosystems, 5: 1-19. Go to original source...
  41. Pretzsch H., Steckel M., Heym M., Biber P., Ammer C., Ehbrecht M., Bielak K., Bravo F., Ordóñez C., Collet C., Vast F., Drössler L., Brazaitis G., Godvod K., Jansons A., de-Dios-García J., Löf M., Aldea J., Korboulewsky N., Reventlow D.O.J., Nothdurft A., Engel M., Pach M., Skrzyszewski J., Pardos M., Ponette Q., Sitko R., Fabrika M., Svoboda M., Černý J., Wolff B., Ruíz-Peinado R., del Río M. (2020): Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak [Q. robur L., Quercus petraea (Matt.) Liebl.] analysed along a productivity gradient through Europe. European Journal of Forest Research, 139: 349-367. Go to original source...
  42. Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456-464. Go to original source...
  43. Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M. (2019): Drought matters: Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 262: 947-961. Go to original source...
  44. Seidl R., Schelhaas M.J., Rammer W., Verkerk P.J. (2014): Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4: 806-810. Go to original source... Go to PubMed...
  45. Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., Vacchiano G., Wild J., Ascoli D., Petr M., Honkaniemi J., Lexer M.J., Trotsiuk V., Mairota P., Svoboda M., Fabrika M., Nagel T.A., Reyer C.P.O. (2017): Forest disturbances under climate change. Nature Climate Change, 7: 395-402. Go to original source... Go to PubMed...
  46. Sharma R.P., Štefančík I., Vacek Z., Vacek S. (2019): Generalized nonlinear mixed-effects individual tree diameter increment models for beech forests in Slovakia. Forests, 10: 451. Go to original source...
  47. Šimůnek V., Vacek Z., Vacek S., Králíček I., Vančura K. (2019): Growth variability of European beech (Fagus sylvatica L.) natural forests: Dendroclimatic study from Krkonoše National Park. Central European Forestry Journal, 65: 92-102. Go to original source...
  48. Šimůnek V., Sharma R.P., Vacek Z., Vacek S., Hůnová I. (2020): Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: A forest science from different perspective. European Journal of Forest Research, 139: 999-1013. Go to original source...
  49. Šimůnek V., Vacek Z., Vacek S., Ripullone F., Hájek V., D'Andrea G. (2021): Tree rings of European beech (Fagus sylvatica L.) indicate the relationship with solar cycles during climate change in central and southern Europe. Forests, 12: 259. Go to original source...
  50. Steckel M., del Río M., Heym M., Aldea J., Bielak K., Brazaitis G., Černý J., Coll L., Collet C., Ehbrecht M., Jansons A., Nothdurft A., Pach M., Pardos M., Ponette Q., Reventlow D.O.J., Sitko R., Svoboda M., Vallet P., Wolff B., Pretzsch H. (2020): Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak [Quercus robur L., Quercus petraea (Matt.) Liebl.] - Site water supply and fertility modify the mixing effect. Forest Ecology and Management, 461: 117908. Go to original source...
  51. Tegel W., Seim A., Hakelberg D., Hoffmann S., Panev M., Westphal T., Büntgen U. (2014): A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research, 133: 61-71. Go to original source...
  52. Vacek S., Prokůpková A., Vacek Z., Bulušek D., Šimůnek V., Králíček I., Prausová R., Hájek V. (2019a): Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. Journal of Forest Science, 65: 331-345. Go to original source...
  53. Vacek Z., Vacek S., Slanař J., Bílek L., Bulušek D., Štefančík I., Králíček I., Vančura K. (2019b): Adaption of Norway spruce and European beech forests under climate change: From resistance to close-to-nature silviculture. Central European Forestry Journal, 65: 129-144. Go to original source...
  54. Vacek Z., Prokůpková A., Vacek S., Cukor J., Bílek L., Gallo J., Bulušek D. (2020): Silviculture as a tool to support stability and diversity of forests under climate change: Study from Krkonoše Mountains. Central European Forestry Journal, 66: 116-129. Go to original source...
  55. Vacek Z., Prokůpková A., Vacek S., Bulušek D., Šimůnek V., Hájek V., Králíček I. (2021): Mixed vs. monospecific mountain forests in response to climate change: Structural and growth perspectives of Norway spruce and European beech. Forest Ecology and Management, 488: 119019. Go to original source...
  56. Vacek Z., Vacek S., Cukor J., Bulušek D., Slávik M., Lukáčik I., Štefančík I., Sitková Z., Eşen D., Ripullone F., Yildiz O., Sarginci M., D'Andrea G., Weatherall A., Šimůnek V., Hájek V., Králíček I., Prausová P., Bieniasz A., Prokůpková A., Putalová T. (2022): Dendrochronological data from twelve countries proved definite growth response of black alder [Alnus glutinosa (L.) Gaertn.] to climate courses across its distribution range. Central European Forestry Journal, 68: 139-153. Go to original source...
  57. Vacek Z., Vacek S., Cukor J. (2023): European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332: 117353. Go to original source... Go to PubMed...
  58. Valtera M., Schaetzl R.J. (2017): Pit-mound microrelief in forest soils: Review of implications for water retention and hydrologic modelling. Forest Ecology and Management, 393: 40-51. Go to original source...
  59. Van der Maaten E. (2012): Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees, 26: 777-788. Go to original source...
  60. Venäläinen A., Lehtonen I., Laapas M., Ruosteenoja K., Tikkanen O.P., Viiri H., Ikonen V.P., Peltola H. (2020): Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Global Change Biology, 26: 4178-4196. Go to original source... Go to PubMed...
  61. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82. Go to original source...
  62. Vospernik S., Heym M., Pretzsch H., Pach M., Steckel M., Aldea J., Brazaitis G., Bravo-Oviedo A., Del Rio M., Löf M., Pardos M., Bielak K., Bravo F., Coll L., Černý J., Droessler L., Ehbrecht M., Jansons A., Korboulewsky N., Jourdan M., Nord-Larsen T., Nothdurft A., Ruiz-Peinado R., Ponette Q., Sitko R., Svoboda M., Wolff B. (2023): Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - A dynamic, sensitive equilibrium. Forest Ecology and Management, 530: 120753. Go to original source...
  63. Weithmann G., Paligi S.S., Schuldt B., Leuschner C. (2022): Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. Tree Physiology, 42: 2224-2238. Go to original source... Go to PubMed...
  64. Zweifel R. (2016): Radial stem variations - A source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39: 231-232. Go to original source... Go to PubMed...
  65. Zweifel R., Zimmermann L., Newbery D.M. (2005): Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiology, 25: 147-156. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.