J. For. Sci., 2025, 71(3):149-158 | DOI: 10.17221/74/2024-JFS
Carbon storage and climate mitigation effect in Central European forestry – To be managed, or left unmanaged?Original Paper
- 1 Forest Management Institute (FMI), Brandýs nad Labem, Czech Republic
- 2 Institute of Forest Ecosystem Research (IFER), Jílové u Prahy, Czech Republic
This study investigates differences in carbon storage between managed and unmanaged forests in the growth conditions of Central Europe. Norway spruce (Picea abies), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) dominated forest types were considered, as these are the most common forest species in the Czech Republic. Scots pine (Pinus sylvestris), as the second most common species, was excluded due to lacking relevant reference data on unmanaged forests. Managed and unmanaged variants of each forest type were assessed in terms of carbon sequestered in biomass, dead wood and harvested wood products (in the managed variant). Harvested wood products yielded during two rotation periods were considered, including their substitution effect as well as respiratory losses, to fully assess their contribution to carbon balance. Average carbon storage in the above-ground biomass and deadwood was lower in the managed forest compared to the unmanaged forest in comparable growth conditions. However, this difference is in our model examples compensated by carbon stored in the harvested wood products including their substitution effect in the managed forests of Norway spruce and pedunculate oak. Contrarily, managed European beech forests showed, in our case, slightly lower carbon storage compared to the unmanaged alternative. The estimates for all species are considered to be rather conservative due to the assumed factors affecting the results. Due to generally limited comparative data on unmanaged forests in the region, the results should be interpreted with caution.
Keywords: CO2 emission offset; displacement effect; harvested wood products; increment; substitution effect; tree biomass; wood production
Received: September 19, 2024; Revised: December 19, 2024; Accepted: December 19, 2024; Prepublished online: March 25, 2025; Published: March 28, 2025 Show citation
References
- Černý M., Pařez J. (1996): Růstové a taxační tabulky hlavních dřevin České republiky: (smrk, borovice, buk, dub). Jílové u Prahy, IFER: 245. (in Czech)
- CHMI (2023): National Greenhouse Gas Inventory Report of the Czech Republic. Reported Inventories 1990-2021. Prague, Czech Hydrometeorological Institute: 566. Available at: https://www.chmi.cz/files/portal/docs/uoco/oez/nis/NIR/CZE_NIR-2023-2021_UNFCCC_allinone_ISBN.pdf
- Cienciala E., Altman J., Doležal J., Kopáček J., Štěpánek P., Ståhl G., Tumajer J. (2018): Increased spruce tree growth in Central Europe since 1960s. Science of the Total Environment, 619-620: 1637-1647.
Go to original source...
Go to PubMed...
- EC (2021): New EU Forest Strategy for 2030. Brussels, European Commission: 27.
- Dieter M., Weimar H., Iost S. (2020): Assessment of Possible Leakage Effects of Implementing EU COM Proposals for the EU Biodiversity Strategy on Forestry and Forests in Non-EU Countries. Braunschweig, Thünen-Institut: 159.
- Grassi G., House J., Dentener F., Federici S., den Elzen M., Penman J. (2017): The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7: 220-226.
Go to original source...
- Howard C., Dymond C.C., Griess V.C., Tolkien-Spurr D., van Kooten G.C. (2021): Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance and Management, 16: 9.
Go to original source...
Go to PubMed...
- Iordan C.M., Hu X., Arvesen A., Kauppi P., Cherubini F. (2018): Contribution of forest wood products to negative emissions: Historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance and Management, 13: 12.
Go to original source...
Go to PubMed...
- IPCC (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Geneva, Intergovernmental Panel on Climate Change: 1970.
- Kahle H.P., Karjalainen T., Schuck A., Ågren G.I., Kellomäki S., Mellert K.H., Prietzel J., Rehfuess K., Spiecker H. (2008): Causes and Consequences of Forest Growth Trends in Europe - Results of the RECOGNITION Project. European Forest Institute Research Report. Leiden, Brill: 261.
Go to original source...
- Kallio A.M.I., Houtmeyers S., Aza A. (2023): On carbon substitution and storage factors for harvested wood products in the context of climate change mitigation in the Norwegian forest sector. Environmental and Climate Technologies, 27: 254-270.
Go to original source...
- Korosuo A., Pilli R., Abad Viñas R., Blujdea V.N.B., Colditz R.R., Fiorese G., Rossi S., Vizzarri M., Grassi G. (2023): The role of forests in the EU climate policy: Are we on the right track? Carbon Balance and Management, 18: 15.
Go to original source...
Go to PubMed...
- Korpel Š. (1989): Pralesy Slovenska. 1st Ed. Bratislava, Veda: 328. (in Slovak)
- Kučera M., Adolt R. (2019): Národní inventarizace lesů v České republice - Výsledky druhého cyklu 2011-2015. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem: 440. (in Czech)
- Landry G., Thiffault E., Cyr D., Moreau L., Boulanger Y., Dymond C. (2021): Mitigation potential of ecosystem-based forest management under climate change: A case study in the boreal-temperate forest ecotone. Forests, 12: 1667.
Go to original source...
- Leskinen P., Cardellini G., González-García S., Hurmekoski E., Sathre R., Seppälä J., Smyth C., Stern T., Verkerk P.J. (2018): Substitution Effects of Wood-based Products in Climate Change Mitigation. From Science to Policy 7. Joensuu, European Forest Institute: 28.
Go to original source...
- Lindroth A., Tranvik L. (2021): Accounting for all territorial emissions and sinks is important for development of climate mitigation policies. Carbon Balance and Management, 16: 10.
Go to original source...
Go to PubMed...
- Liu Z., Deng Z., Davis S.J., Ciais P. (2024): Global carbon emissions in 2023. Nature Reviews Earth & Environment, 5: 253-254.
Go to original source...
- Máslo J., Adolt R., Kohn I., Kučera M. (2023): Národní inventarizace lesů - Výsledky třetího cyklu 2016-2020. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem: 7. (in Czech)
- Mo L., Zohner C.M., Reich P.B., Liang J., De Miguel S., Nabuurs G.J., Renner S.S., Van Den Hoogen J., Herold A.A.M. et al. (2023): Integrated global assessment of the natural forest carbon potential. Nature, 624: 92-101.
Go to original source...
Go to PubMed...
- Moreau L., Thiffault E., Kurz W.A., Beauregard R. (2023): Under what circumstances can the forest sector contribute to 2050 climate change mitigation targets? A study from forest ecosystems to landfill methane emissions for the province of Quebec, Canada. GCB Bioenergy, 15: 1119-1139.
Go to original source...
- Pretzsch H., Biber P., Schütze G., Uhl E., Rötzer T. (2014): Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications 5: 4967.
Go to original source...
Go to PubMed...
- Pretzsch H., Del Río M., Arcangeli C., Bielak K., Dudzinska M., Forrester D.I., Klädtke J., Kohnle U., Ledermann T., Matthews R., Nagel J., Nagel R., Ningre F., Nord-Larsen T., Biber P. (2023): Forest growth in Europe shows diverging large regional trends. Scientific Reports, 13: 15373.
Go to original source...
Go to PubMed...
- Prietzel J., Falk W., Reger B., Uhl E., Pretzsch H., Zimmermann L. (2020): Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change. Global Change Biology, 26: 5796-5815.
Go to original source...
Go to PubMed...
- Roe S., Streck C., Beach R., Busch J., Chapman M., Daioglou V., Deppermann A., Doelman J., Emmet-Booth J., Engelmann J., Fricko O., Frischmann C., Funk J., Grassi G., Griscom B., Havlik P., Hanssen S., Humpenöder F., Landholm D., Lomax G., Lehmann J., Mesnildrey L., Nabuurs G., Popp A., Rivard C., Sanderman J., Sohngen B., Smith P., Stehfest E., Woolf D., Lawrence D. (2021): Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 27: 6025-6058.
Go to original source...
Go to PubMed...
- Sathre R., O'Connor J. (2010): Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environmental Science & Policy, 13: 104-114.
Go to original source...
- Schulze E.D., Stupak I., Hessenmöller D. (2019): The climate mitigation potential of managed versus unmanaged spruce and beech forests in Central Europe. In: Magalhães Pires J.C., Da Cunha Gonçalves A.L. (eds): Bioenergy with Carbon Capture and Storage. Cambridge, Elsevier Academic Press: 131-149.
Go to original source...
- Simanov V. (1996): Tabulky koeficientů výtěžnosti sortimentů surového dříví. (unpublished; in Czech)
- Smyth C., Rampley G., Lemprière T.C., Schwab O., Kurz W.A. (2017): Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy, 9: 1071-1084.
Go to original source...
- Thomas S.C., Martin A.R. (2012): Carbon content of tree tissues: A synthesis. Forests, 3: 332-352.
Go to original source...
- Valade A., Bellassen V., Magand C., Luyssaert S. (2017): Sustaining the sequestration efficiency of the European forest sector. Forest Ecology and Management, 405: 44-55.
Go to original source...
- Vrška T., Hort L., Adam D., Odehnalová P., Horal D. (2002): Dynamika vývoje pralesovitých rezervací v České republice. Svazek I, Českomoravská vrchovina - Polom, Žákova hora. Prague, Academia: 213. (in Czech)
- Vrška T., Adam D., Hort L., Odehnalová P., Horal D., Král K. (2006): Dynamika vývoje pralesovitých rezervací v České republice. Svazek II., Lužní lesy - Cahnov-Soutok, Ranšpurk, Jiřina. Prague, Academia: 214. (in Czech)
- Zhang X., Chen J., Dias A.C., Yang H. (2020): Improving carbon stock estimates for in-use harvested wood products by linking production and consumption - A global case study. Environmental Science & Technology, 54: 2565-2574.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.