J. For. Sci., 2025, 71(1):23-39 | DOI: 10.17221/59/2024-JFS


High light availability offsets low naturalness regarding diversity but cannot compensate for reduced ecological value:
A case study of near-natural forests and tree plantations in SerbiaOriginal Paper

Khanh Vu Ho ORCID...1,2,3, Mirjana Ćuk ORCID...4,5, Andraľ Čarni ORCID...6,7,8, Dragana Vukov ORCID...4, Miloą Ilić ORCID...4, László Erdös ORCID...9,10
1 Faculty of Natural Resources-Environment, Kien Giang University, Kien Giang, Vietnam
2 Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
3 Lendület Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
4 Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
5 Department of Botany and Zoology, Faculty of Science, Masaryk University in Brno, Brno, Czech Republic
6 Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
7 Macedonian Academy of Sciences and Arts, Skopje, Republic of North Macedonia
8 School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
9 Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
10 Department of Ecology, University of Debrecen, Debrecen, Hungary

In Eastern Europe, near-natural forest patches are decreasing and are gradually replaced by non-native plantations. Tree plantations are commonly thought to be simple ecosystems with low conservation value, although this conclusion is mainly based on simple taxonomic diversity indices, which ignore functional and phylogenetic diversity. In this study, our objective was to compare species composition, diagnostic species, taxonomic, functional, and phylogenetic diversity, as well as naturalness status between two near-natural forest types (Quercus-Tilia and Populus alba) and two common plantation types (non-native Pinus sylvestris and non-native Robinia pseudoacacia) in the Deliblato Sands, Serbia. Our results showed that the species composition significantly differed in the four habitats. Each habitat had some species that were significantly concentrated in them. Most of the diagnostic species in the Quercus-Tilia forests were forest specialist plant species, while those in Populus alba forests were species associated with warmer and drier habitats, whereas the plantations hosted diagnostic species with broader ecological tolerances. Native species richness, total species diversity, and functional and phylogenetic diversity were similar in the four studied habitats, which can be explained by the combined effects of light regime and naturalness. We assessed low naturalness (i.e. high degradation) in plantations, which can be expected to reduce diversity. However, higher light availability was probably able to compensate for this effect. Non-native plantations, especially Robinia pseudoacacia plantations, were the most degraded and hosted the highest non-native species richness, implying that they are ecologically undesirable. In light of our results, we suggest that near-natural forest stands should be protected and efforts to restore these forests should be given high priority. Furthermore, it is advisable to continue with a forestry strategy that involves replacing non-native plantations with native ones, such as Tilia tomentosa, in the Deliblato Sands.

Keywords: degraded habitats; ecological indicators; exotic tree plantations; functional diversity; phylogenetic diversity

Received: August 18, 2024; Revised: November 10, 2024; Accepted: November 19, 2024; Prepublished online: January 27, 2025; Published: January 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vu Ho K, Ćuk M, Čarni A, Vukov D, Ilić M, Erdös L.
High light availability offsets low naturalness regarding diversity but cannot compensate for reduced ecological value:
A case study of near-natural forests and tree plantations in Serbia. J. For. Sci. 2025;71(1):23-39. doi: 10.17221/59/2024-JFS.
Download citation

Supplementary files:

Download file59-2024-JFS_ESM.pdf

File size: 2.61 MB

References

  1. Albert G., Gallegos S.C., Greig K.A., Hanisch M., de la Fuente D.L., Föst S., Maier S.D., Sarathchandra C., Phillips H.R.P., Kambach S. (2021): The conservation value of forests and tree plantations for beetle (Coleoptera) communities: A global meta-analysis. Forest Ecology and Management, 491: 119201. Go to original source...
  2. Arnan X., Arcoverde G.B., Pie M.R., Ribeiro-Neto J.D., Leal I.R. (2018): Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest. Science of the Total Environment, 631-632: 429-438. Go to original source... Go to PubMed...
  3. Beason R.D., Riesch R., Koricheva J. (2020): Tidying up the cluttered understorey: Foraging strategy mediates bat activity responses to invasive rhododendron. Forest Ecology and Management, 475: 118392. Go to original source...
  4. Bernard-Verdier M., Navas M.L., Vellend M., Violle C., Fayolle A., Garnier E. (2012): Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100: 1422-1433. Go to original source...
  5. Borhidi A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Botanica Hungarica, 39: 97-181.
  6. Botta-Dukát Z. (2005): Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16: 533-540. Go to original source...
  7. Bremer L.L., Farley K.A. (2010): Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation, 19: 3893-3915. Go to original source...
  8. Brockerhoff E.G., Jactel H., Parrotta J.A., Quine C.P., Sayer J. (2008): Plantation forests and biodiversity: Oxymoron or opportunity? Biodiversity and Conservation, 17: 925-951. Go to original source...
  9. Brunet J., Valtinat K., Mayr M.L., Felton A., Lindbladh M., Bruun H.H. (2011): Understory succession in post-agricultural oak forests: Habitat fragmentation affects forest specialists and generalists differently. Forest Ecology and Management, 262: 1863-1871. Go to original source...
  10. Butorac B., Panjković B. (2013): Edicija Vegetacija Vojvodine, Knjiga 1: Peąčarska vegetacija u Vojvodini. Novi Sad, Pokrajinski zavod za zaątitu prirode: 159. (in Serbian)
  11. Cadotte M.W., Cavender-Bares J., Tilman D., Oakley T.H. (2009): Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PloS One, 4: e5695. Go to original source... Go to PubMed...
  12. Cadotte M.W., Carscadden K., Mirotchnick N. (2011): Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48: 1079-1087. Go to original source...
  13. Calviño-Cancela M., Rubido-Bará M., van Etten E.J.B. (2012): Do eucalypt plantations provide habitat for native forest biodiversity? Forest Ecology and Management, 270: 153-162. Go to original source...
  14. Chapman C.A., Chapman L.J. (1999): Forest restoration in abandoned agricultural land: A case study from East Africa. Conservation Biology, 13: 1301-1311. Go to original source...
  15. Chytrý M. (2013): Vegetation of the Czech Republic 4. Forest and Scrub Vegetation. Prague, Academia: 551. (in Czech)
  16. Chytrý M., Tichý L., Holt J., Botta-Dukát Z. (2002): Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13: 79-90. Go to original source...
  17. Cierjacks A., Kowarik I., Joshi J., Hempel S., Ristow M., von der Lippe M., Weber E. (2013): Biological flora of the British Isles: Robinia pseudoacacia. Journal of Ecology, 101: 1623-1640. Go to original source...
  18. Csecserits A., Botta-Dukát Z., Kröel-Dulay G., Lhotsky B., Ónodi G., Rédei T., Szitár K., Halassy M. (2016): Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agriculture, Ecosystems & Environment, 226: 88-98. Go to original source...
  19. Ćuk M. (2019): Status i vremenska dinamika flore i vegetacije Deliblatske peąčare. [Ph.D. Thesis.] Novi Sad, University of Novi Sad. (in Serbian)
  20. Ćuk M., Ponjarac R., Igić D., Ilić M., Oldja M., Vukov D., Čarni A. (2023): Historical overview of the Deliblato Sands afforestation. ©umarski list, 147: 383-392. Go to original source...
  21. de Bello F., Botta-Dukát Z., Lepą J., Fibich P. (2021a): Towards a more balanced combination of multiple traits when computing functional differences between species. Methods in Ecology and Evolution, 12: 443-448. Go to original source...
  22. de Bello F., Carmona C.P., Dias A.T.C., Götzenberger L., Moretti M., Berg M.P. (2021b): Handbook of Trait-Based Ecology: From Theory to R Tools. Cambridge, Cambridge University Press: 295. Go to original source...
  23. Debastiani V.J., Pillar V.D. (2012): SYNCSA - R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics, 28: 2067-2068. Go to original source... Go to PubMed...
  24. Diekmann M. (2003): Species indicator values as an important tool in applied plant ecology - A review. Basic and Applied Ecology, 4: 493-506. Go to original source...
  25. Doxa A., Devictor V., Baumel A., Pavon D., Médail F., Leriche A. (2020): Beyond taxonomic diversity: Revealing spatial mismatches in phylogenetic and functional diversity facets in Mediterranean tree communities in southern France. Forest Ecology and Management, 474: 118318. Go to original source...
  26. Dzwonko Z. (2001): Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. Journal of Applied Ecology, 38: 942-951. Go to original source...
  27. Erdős L., Bátori Z., Penksza K., Dénes A., Kevey B., Kevey D., Magnes M., Sengl P., Tölgyesi C. (2017): Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Polish Journal of Ecology, 65: 1-13. Go to original source...
  28. Erdős L., Kröel-Dulay G., Bátori Z., Kovács B., Németh C., Kiss P.J., Tölgyesi C. (2018): Habitat heterogeneity as a key to high conservation value in forest-grassland mosaics. Biological Conservation, 226: 72-80. Go to original source...
  29. Erdős L., Bede-Fazekas Á., Bátori Z., Berg C., Kröel-Dulay G., Magnes M., Sengl P., Tölgyesi C., Török P., Zinnen J. (2022): Species-based indicators to assess habitat degradation: Comparing the conceptual, methodological, and ecological relationships between hemeroby and naturalness values. Ecological Indicators, 136: 108707. Go to original source...
  30. Erdős L., Ho K.V., Bátori Z., Kröel-Dulay G., Ónodi G., Tölgyesi C., Török P., Lengyel A. (2023): Taxonomic, functional and phylogenetic diversity peaks do not coincide along a compositional gradient in forest-grassland mosaics. Journal of Ecology, 111: 182-197. Go to original source...
  31. Fanelli G., Pignatti S., Testi A. (2007): An application case of ecological indicator values (Zeigerwerte) calculated with a simple algorithmic approach. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 141: 15-21. Go to original source...
  32. FAO (2022): The State of the World's Forests 2022. Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies. Rome, Food and Agriculture Organization of the United Nations: 141.
  33. Flynn D.F.B., Mirotchnick N., Jain M., Palmer M.I., Naeem S. (2011): Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 92: 1573-1581. Go to original source... Go to PubMed...
  34. Forest Europe (2020): State of Europe's Forests 2020. Bratislava, Ministerial Conference on the Protection of Forests in Europe - Forest Europe: 392.
  35. Fried G., Petit S., Reboud X. (2010): A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecology, 10: 20. Go to original source... Go to PubMed...
  36. Gilliam F.S. (2007): The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 57: 845-858. Go to original source...
  37. Helmus M.R., Keller W.B., Paterson M.J., Yan N.D., Cannon C.H., Rusak J.A. (2010): Communities contain closely related species during ecosystem disturbance. Ecology Letters, 13: 162-174. Go to original source... Go to PubMed...
  38. Ho K.V., Kröel-Dulay G., Tölgyesi C., Bátori Z., Tanács E., Kertész M., Török P., Erdős L. (2023a): Non-native tree plantations are weak substitutes for near-natural forests regarding plant diversity and ecological value. Forest Ecology and Management, 531: 120789. Go to original source...
  39. Ho K.V., Ćuk M., ©ikuljak T., Kröel-Dulay G., Bátori Z., Tölgyesi C., Fűrész A., Török P., Hábenczyus A.A., Hegyesi A., Coşgun Z.L., Erdős L. (2023b): Forest edges revisited: Species composition, edge-related species, taxonomic, functional, and phylogenetic diversity. Global Ecology and Conservation, 46: e02625. Go to original source...
  40. Ho K.V., Süle G., Kovács B., Erdős L. (2024): Strong differences in microclimate among the habitats of a forest-steppe ecosystem. Időjárás, 128: 1-26. Go to original source...
  41. Horák J., Brestovanská T., Mladenović S., Kout J., Bogusch P., Halda J.P., Zasadil P. (2019): Green desert?: Biodiversity patterns in forest plantations. Forest Ecology and Management, 433: 343-348. Go to original source...
  42. Hynes E.F., Whisson D.A., Di Stefano J. (2021): Response of an arboreal species to plantation harvest. Forest Ecology and Management, 490: 119092. Go to original source...
  43. Ito S., Nakayama R., Buckley G.P. (2004): Effects of previous land-use on plant species diversity in semi-natural and plantation forests in a warm-temperate region in southeastern Kyushu, Japan. Forest Ecology and Management, 196: 213-225. Go to original source...
  44. Jacoboski L.I., Debastiani V.J., de Mendonça-Lima A., Hartz S.M. (2016): How do diversity and functional nestedness of bird communities respond to changes in the landscape caused by eucalyptus plantations? Community Ecology, 17: 107-113. Go to original source...
  45. Jin Y., Qian H. (2022): V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 44: 335-339. Go to original source... Go to PubMed...
  46. Jucker T., Carboni M., Acosta A.T.R. (2013): Going beyond taxonomic diversity: Deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Diversity and Distributions, 19: 1566-1577. Go to original source...
  47. Junggebauer A., Hartke T.R., Ramos D., Schaefer I., Buchori D., Hidayat P., Scheu S., Drescher J. (2021): Changes in diversity and community assembly of jumping spiders (Araneae: Salticidae) after rainforest conversion to rubber and oil palm plantations. PeerJ, 9: e11012. Go to original source... Go to PubMed...
  48. Kadović R., Bohajar Y.A.M., Perović V., Belanović Simić S., Todosijević M., Toąić S., Anđelić M., Mlađan D., Dovezenski U. (2016): Land sensitivity analysis of degradation using MEDALUS model: Case study of Deliblato Sands, Serbia. Archives of Environmental Protection, 42: 114-124. Go to original source...
  49. Kanninen M. (2010): Plantation forests: Global perspectives. In: Bauhus J., van der Meer P., Kanninen M. (eds): Ecosystem Goods and Services from Plantation Forests. London, Earthscan: 1-15.
  50. Katovai E., Burley A.L., Mayfield M.M. (2012): Understory plant species and functional diversity in the degraded wet tropical forests of Kolombangara Island, Solomon Islands. Biological Conservation, 145: 214-224. Go to original source...
  51. Kembel S.W., Cowan P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., Blomberg S.P., Webb C.O. (2010): Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26: 1463-1464. Go to original source... Go to PubMed...
  52. Kováč Ą., Kostúrová N., Miklisová D. (2005): Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak woods and Pinus nigra plantations in the Slovak Karst (Slovakia). Pedobiologia, 49: 29-40. Go to original source...
  53. Landuyt D., De Lombaerde E., Perring M.P., Hertzog L.R., Ampoorter E., Maes S.L., De Frenne P., Ma S., Proesmans W., Blondeel H., Sercu B.K., Wang B., Wasof S., Verheyen K. (2019): The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology, 25: 3625-3641. Go to original source... Go to PubMed...
  54. Lindroos A.J., Derome J., Derome K., Smolander A. (2011): The effect of Scots pine, Norway spruce and silver birch on the chemical composition of stand throughfall and upper soil percolation water in northern Finland. Boreal Environment Research, 16: 240-250.
  55. Malysz M., Milesi S.V., Dos Santos A.S., Overbeck G.E. (2019): Functional patterns of tree communities in natural Araucaria forests and old monoculture conifer plantations. Acta Botanica Brasilica, 33: 777-785. Go to original source...
  56. Mikulová K., Jarolímek I., Bacigál T., Hegedüąová K., Májeková J., Medvecká J., Slabejová D., ©ibík J., ©kodová I., Zaliberová M., ©ibíková M. (2019): The effect of non-native black pine (Pinus nigra J. F. Arnold) plantations on environmental conditions and undergrowth diversity. Forests, 10: 548. Go to original source...
  57. Molnár Z., Biró M., Bartha S., Fekete G. (2012): Past trends, present state and future prospects of Hungarian forest-steppes. In: Werger M.J.A., van Staalduinen M.A. (eds): Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World. Dordrecht, Springer: 209-252. Go to original source...
  58. Nicolescu V.N., Rédei K., Mason W.L., Vor T., Pöetzelsberger E., Bastien J.C., Brus R., Benča» T., Đodan M., Cvjetkovic B., Andraąev S., La Porta N., Lavnyy V., Mandľukovski D., Petkova K., Roľenbergar D., W±sik R., Mohren G.M.J., Monteverdi M.C. et al. (2020): Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forestry Research, 31: 1081-1101. Go to original source...
  59. Nooten S.S., Lee R.H., Guénard B. (2021): Evaluating the conservation value of sacred forests for ant taxonomic, functional and phylogenetic diversity in highly degraded landscapes. Biological Conservation, 261: 109286. Go to original source...
  60. Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Solymos P., Stevens M.H.H., Szoecs E. et al. (2022): vegan: Community Ecology Package. R package version 2.6-2. Available at: https://CRAN.R-project.org/package=vegan
  61. Ónodi G., Botta Dukát Z., Winkler D., Rédei T. (2022): Endangered lowland oak forest steppe remnants keep unique bird species richness in Central Hungary. Journal of Forestry Research, 33: 343-355. Go to original source...
  62. Onyekwelu J.C., Olabiwonnu A.A. (2016): Can forest plantations harbour biodiversity similar to natural forest ecosystems over time? International Journal of Biodiversity Science, Ecosystem Services & Management, 12: 108-115. Go to original source...
  63. Parabućski S. (1980): Potencijalna vegetacija Deliblatakog peska. In: Marinković P. (ed.): Deliblatski pesak. Novi Sad, Specijalni prirodni rezervat Deliblatski pesak ©umsko industrijski kombinat Pančevo: 312-314. (in Serbian)
  64. Pawson S.M., Brin A., Brockerhoff E.G., Lamb D., Payn T.W., Paquette A., Parrotta J.A. (2013): Plantation forests, climate change and biodiversity. Biodiversity and Conservation, 22: 1203-1227. Go to original source...
  65. Persson S. (1981): Ecological indicator values as an aid in the interpretation of ordination diagrams. Journal of Ecology, 69: 71-84. Go to original source...
  66. Piwczyński M., Puchałka R., Ulrich W. (2016): Influence of tree plantations on the phylogenetic structure of understorey plant communities. Forest Ecology and Management, 376: 231-237. Go to original source...
  67. R Core Team (2023): R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: https://cran.r-project.org/bin/windows/base/
  68. Rédei T., Csecserits A., Lhotsky B., Barabás S., Kröel-Dulay G., Ónodi G., Botta-Dukát Z. (2020): Plantation forests cannot support the richness of forest specialist plants in the forest-steppe zone. Forest Ecology and Management, 461: 117964. Go to original source...
  69. Ricotta C. (2005): A note on functional diversity measures. Basic and Applied Ecology, 6: 479-486. Go to original source...
  70. Santos F.M., Chaer G.M., Diniz A.R., de Carvalho Balieiro F. (2017): Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. Forest Ecology and Management, 384: 110-121. Go to original source...
  71. Scherer-Lorenzen M. (2008): Functional diversity affects decomposition processes in experimental grasslands. Functional Ecology, 22: 547-555. Go to original source...
  72. Scherrer D., Guisan A. (2019): Ecological indicator values reveal missing predictors of species distributions. Scientific Reports, 9: 3061. Go to original source... Go to PubMed...
  73. Selvi F., Carrari E., Coppi A. (2016): Impact of pine invasion on the taxonomic and phylogenetic diversity of a relict Mediterranean forest ecosystem. Forest Ecology and Management, 367: 1-11. Go to original source...
  74. ©ibíková M., Jarolímek I., Hegedüąová K., Májeková J., Mikulová K., Slabejová D., ©kodová I., Zaliberová M., Medvecká J. (2019): Effect of planting alien Robinia pseudoacacia trees on homogenization of Central European forest vegetation. Science of the Total Environment, 687: 1164-1175. Go to original source... Go to PubMed...
  75. Sipos G., Marković S.B., Gavrilov M.B., Balla A., Filyó D., Bartyik T., Mészáros M., Tóth O., van Leeuwen B., Lukić T., Urdea P., Onaca A., Mezősi G., Kiss T. (2022): Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia. Quaternary Research, 107: 113-124. Go to original source...
  76. Slabejová D., Bacigál T., Hegedüąová K., Májeková J., Medvecká J., Mikulová K., ©ibíková M., ©kodová I., Zaliberová M., Jarolímek I. (2019): Comparison of the understory vegetation of native forests and adjacent Robinia pseudoacacia plantations in the Carpathian-Pannonian region. Forest Ecology and Management, 439: 28-40. Go to original source...
  77. Sobuj N.A., Rahman M. (2011): Comparison of plant diversity of natural forest and plantations of Rema-Kalenga Wildlife Sanctuary of Bangladesh. Journal of Forest and Environmental Science, 27: 127-134.
  78. Stephens S.S., Wagner M.R. (2007): Forest plantations and biodiversity: A fresh perspective. Journal of Forestry, 105: 307-313. Go to original source...
  79. Swenson N.G. (2014): Functional and Phylogenetic Ecology in R. New York, Springer: 212. Go to original source...
  80. Szymura T.H., Szymura M., Macioł A. (2014): Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests. Ecological Indicators, 46: 495-503. Go to original source...
  81. Ter Braak C.J.F., Gremmen N.J.M. (1987): Ecological amplitudes of plant species and the internal consistency of Ellenberg's indicator values for moisture. Vegetatio, 69: 79-87. Go to original source...
  82. The Plant List (2013): The Plant List. Version 1.1. Available at: http://www.theplantlist.org
  83. Tölgyesi C., Török P., Hábenczyus A.A., Bátori Z., Valkó O., Deák B., Tóthmérész B., Erdős L., Kelemen A. (2020): Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography, 43: 848-859. Go to original source...
  84. Tölgyesi C., Buisson E., Helm A., Temperton V.M., Török P. (2022): Urgent need for updating the slogan of global climate actions from 'tree planting' to 'restore native vegetation.'. Restoration Ecology, 30: e13594. Go to original source...
  85. Tomaz C., Alegria C., Monteiro J.M., Teixeira M.C. (2013): Land cover change and afforestation of marginal and abandoned agricultural land: A 10year analysis in a Mediterranean region. Forest Ecology and Management, 308: 40-49. Go to original source...
  86. Tomović G., Vukojičić S., Niketić M., Zlatković B., Stevanović V. (2007): Fritillaria (Liliaceae) in Serbia: Distribution, habitats and some taxonomic notes. Phytologia Balcanica, 13: 359-370.
  87. Trachsel J. (2022): funfuns: Functions I Use (Title Case). R package version 0.1.2. Available at: https://github.com/Jtrachsel/funfuns/
  88. Tüxen R., Ellenberg H. (1937): Der systematische und der ökologische Gruppenwert: Ein Beitrag zur Begriffsbildung und Methodik der Pflanzensoziologie. Jahresbericht der Naturhistorischen Gesellschaft zu Hannover, 81-87: 171-184. Available at: https://www.zobodat.at/pdf/Jber-Naturhist-Ges-Hannover_81-87_0171-0184.pdf (in German).
  89. Weiher E., van der Werf A., Thompson K., Roderick M., Garnier E., Eriksson O. (1999): Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 10: 609-620. Go to original source...
  90. Westoby M. (1998): A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213-227. Go to original source...
  91. Xi B., Clothier B., Coleman M., Duan J., Hu W., Li D., Di N., Liu Y., Fu J., Li J., Jia L., Fernández J.E. (2021): Irrigation management in poplar (Populus spp.) plantations: A review. Forest Ecology and Management, 494: 119330. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.