J. For. Sci., 2025, 71(1):40-56 | DOI: 10.17221/57/2024-JFS

Assessment of ozone impact on forest vegetation using visible foliar injury, AOT40F exposure index and MDA concentration in two meteorologically contrasting yearsOriginal Paper

Radek Novotný1, Leona Vlasáková2, Vít Šrámek1, Václav Buriánek1, Nina Benešová2
1 Forestry and Game Management Research Institute, Prague, Czech Republic
2 Air Quality Division, Czech Hydrometeorological Institute, Prague, Czech Republic

This study aimed to evaluate ozone (O3) phytotoxic potential using AOT40F (accumulated O3 concentration over a threshold of 40 ppb for forest protection), document visible foliar O3 injury across eight forest monitoring plots, analyse MDA (malondialdehyde) content in leaves and needles, and assess the relationship between visible injury and plot conditions. Initial findings are based on data from the 2021 and 2022 vegetation seasons. AOT40F values exceeded the critical level of 5 ppm·h–1 at all plots, with higher values in 2022. The correlation between AOT40F and visible injury was inconsistent; in 2021, minimal visible O3 injuries were observed, while these were more frequent in 2022, notably on Fagus sylvatica leaves. The altitude effect on O3 concentration indicates greater vegetation damage at higher altitudes. In contrast, the AOT40F-altitude relation was not significant. The 2021 vegetation season was characterised by lower temperatures and higher relative air humidity and soil moisture in comparison to 2022. Stomatal conductance conditions were similar in both years, except for lower soil moisture in 2022. Soil moisture, air humidity, and temperature together accounted for about 50% of the variance in visible injury in 2022. The findings suggest that the AOT40F capability for predicting damage to vegetation is limited and highlight the importance of future research focusing on stomatal O3 flux-based approaches.

Keywords: European beech; malondialdehyde; Norway spruce; ozone

Received: August 9, 2024; Revised: November 20, 2024; Accepted: November 21, 2024; Prepublished online: January 24, 2025; Published: January 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Novotný R, Vlasáková L, Šrámek V, Buriánek V, Benešová N. Assessment of ozone impact on forest vegetation using visible foliar injury, AOT40F exposure index and MDA concentration in two meteorologically contrasting years. J. For. Sci. 2025;71(1):40-56. doi: 10.17221/57/2024-JFS.
Download citation

References

  1. Agathokleous E., Feng Z., Oksanen E., Sicard P., Wang Q., Saitanis C.J., Araminiene V., Blande J.D., Hayes F., Calatayud V., Domingos M., Veresoglou S.D., Peñuelas J., Wardle D.A., De Marco A., Li Z., Harmens H., Yuan X., Vitale M., Paoletti E. (2020): Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 6: 1-17. Go to original source... Go to PubMed...
  2. Ainsworth E.A. (2016): Understanding and improving global crop response to ozone pollution. The Plant Journal, 90: 886-897. Go to original source... Go to PubMed...
  3. Anav A., De Marco A., Proietti C., Alessandri A., Dell'Aquila A., Cionni I., Friedlingstein P., Khvorostyanov D., Menut L., Paoletti E., Sicard P., Sitch S., Vitale M. (2016): Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology, 22: 1608-1627. Go to original source... Go to PubMed...
  4. Anav A., De Marco A., Friedlingstein P., Savi F., Sicard P., Sitch S., Vitale M., Paoletti E. (2019): Growing season extension affects ozone uptake by European forests. Science of the Total Environment, 669: 1043-1052. Go to original source... Go to PubMed...
  5. Anav A., De Marco A., Collalti A., Emberson L., Feng Z., Lombardozzi D., Sicard P., Verbeke T., Viovy N., Vitale M., Paoletti E. (2022): Legislative and functional aspects of different metrics used for ozone risk assessment to forests. Environmental Pollution, 295: 118690. Go to original source... Go to PubMed...
  6. Araminienė V., Sicard P., Anav A., Agathokleous E., Stakėnas V., De Marco A., Varnagirytė-Kabašinskienė I., Paoletti E., Girgždienė R. (2019): Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Science of the Total Environment, 666: 1265-1277. Go to original source... Go to PubMed...
  7. Ashmore M.R. (2003): Surface ozone effects on vegetation. In: Holton J.R., Curry J.A., Pyle J.A. (eds): Encyclopedia of Atmospheric Sciences. London, Elsevier Science: 1663-1671. Go to original source...
  8. Ashmore M.R. (2005): Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment, 28: 949-964. Go to original source...
  9. Baumgarten M., Werner H., Häberle K.H., Emberson L.D., Fabian P., Matyssek R. (2000): Seasonal ozone response of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environmental Pollution, 108: 431-442. Go to original source... Go to PubMed...
  10. Bergmann E., Bender J., Weigel H.J. (1999): Ozone threshold doses and exposure-response relationships for the development of ozone injury symptoms in wild plant species. New Phytologist, 144: 423-435. Go to original source... Go to PubMed...
  11. Bičárová S., Sitková Z., Pavlendová H. (2016): Ozone phytotoxicity in the Western Carpathian Mountains in Slovakia. Forestry Journal, 62: 77-88. Available at: https://intapi.sciendo.com/pdf/10.1515/forj-2016-0008 Go to original source...
  12. Bičárová S., Sitková Z., Pavlendová H., Fleischer P.Jr., Fleischer P.Sr., Bytnerowicz A. (2019): The role of environmental factors in ozone uptake of Pinus mugo Turra. Atmospheric Pollution Research, 10: 283-293. Go to original source...
  13. Boháčová L., Lomský B., Šrámek V. (2011): Development of the Monitoring of Forest Health State Under Life+ 'FutMon' project in the Czech Republic. Strnady, Forestry and Game Management Research Institute: 58. Available at: https://invenio.nusl.cz/record/432014/files/nusl-432014_1.pdf
  14. Brodin M., Helmig D., Oltmans S.J. (2010): Seasonal ozone behavior along an elevation gradient in the Colorado Front Range Mountains. Atmospheric Environment, 44: 5305-5315. Go to original source...
  15. Carrari E., Dalstein L., Hoshika Y., Paoletti E. (2020): MOTTLES Atlas of Visible Foliar Ozone Injury. Available at: https://mottles-project.wixsite.com/life/atlas-ozone-injury
  16. CHMI (2022): Klimatologická ročenka České republiky 2021. Prague, Czech Hydrometeorological Institute: 84. Available at: https://info.chmi.cz/rocenka/meteo2021/meteo2021_SQ.pdf (in Czech).
  17. CHMI (2023a): Klimatologická ročenka České republiky republiky 2022. Prague, Czech Hydrometeorological Institute: 84. Available at: https://info.chmi.cz/rocenka/meteo2022/meteo2022_SQ.pdf (in Czech).
  18. CHMI (2023b): Znečištění ovzduší na území České republiky v roce 2022. Prague, Czech Hydrometeorological Institute: 182. Available at: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/22groc/gr22cz/UKO_Rocenka_2022_v3.pdf (in Czech).
  19. Cieslik S. (2009): Ozone fluxes over various plant ecosystems in Italy: A review. Environmental Pollution, 157: 1487-1496. Go to original source... Go to PubMed...
  20. CLRTAP (2017): Chapter III: Mapping critical levels for vegetation. In: Manual for Modelling and Mapping Critical Loads and Levels. UNECE Convention on Long Range Transboundary Air Pollution: 66. Available at: https://icpvegetation.ceh.ac.uk/sites/default/files/FinalnewChapter3v4Oct2017_000.pdf
  21. Coates J., Mar K.A., Ojha N., Butler T.M. (2016): The influence of temperature on ozone production under varying NOX conditions - A modelling study. Atmospheric Chemistry and Physics, 16: 11601-11615. Go to original source...
  22. Coulston J.W., Smith G.C., Smith W.D. (2003): Regional assessment of ozone sensitive tree species using bioindicator plants. Environmental Monitoring and Assessment, 83: 113-127. Available at: https://link.springer.com/article/10.1023/A:1022578506736 Go to original source... Go to PubMed...
  23. Cox W.M., Chu S. (1993): Meteorologically adjusted ozone trends in urban areas: A probabilistic approach. Atmospheric Environment. Part B. Urban Atmosphere, 27: 425-434. Go to original source...
  24. Dalstein L., Ciriani M.L. (2019): Ozone foliar damage and defoliation monitoring of P. cembra between 2000 and 2016 in the southeast of France. Environmental Pollution, 244: 451-461. Go to original source... Go to PubMed...
  25. Davey M.W., Stals E., Panis B., Keulemans J., Swennen R.L. (2005): High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 347: 201-207. Go to original source... Go to PubMed...
  26. De Marco A., Vitale M., Popa I., Anav A., Badea O., Silaghi D., Leca S., Screpanti A., Paoletti E. (2017): Ozone exposure affects tree defoliation in a continental climate. Science of the Total Environment: 369-404. Go to original source...
  27. De Marco A., Proietti C., Anav A., Ciancarella L., D'Elia I., Fares S., Fornasier M.F., Fusaro L., Gualtieri M., Manes F., Marchetto A., Mircea M., Paoletti E., Piersanti A., Rogora M., Salvati L., Salvatori E., Screpanti A., Vialetto G., Vitale M., Leonardi C. (2019): Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environment International, 125: 320-333. Go to original source... Go to PubMed...
  28. Díaz-de-Quijano M., Peñuelas J., Ribas À. (2009): Increasing interannual and altitudinal ozone mixing ratios in the Catalan Pyrenees. Atmospheric Environment, 43: 6049-6057. Go to original source...
  29. EC (2019): Communication from the Commission - Commission Notice on ecosystem monitoring under Article 9 and Annex V of Directive (EU) 2016/2284 of the European Parliament and of the Council on the reduction of national emissions of certain atmospheric pollutants (NEC-Directive). European Commission. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=oj:JOC_2019_092_R_0001
  30. EEA (2020): Air Quality in Europe - 2020 Report. EEA Report No. 9/2020. Luxembourg, European Environment Agency: 160. Available at: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report
  31. Emberson L.D., Ashmore M.R., Cambridge H.M., Simpson D., Tuovinen J.P. (2000): Modelling stomatal ozone flux across Europe. Environmental Pollution, 109: 403-413. Go to original source... Go to PubMed...
  32. Emberson L.D., Pleijel H., Ainsworth E.A., van den Berg M., Ren W., Osborne S., Mills G., Pandey D., Dentener F., Büker P., Ewert F., Koeble R., Van Dingenen R. (2018): Ozone effects on crops and consideration in crop models. European Journal of Agronomy, 100: 19-34. Go to original source...
  33. EP (2008): Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. European Parliament, Council of the European Union. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0050
  34. EP (2016): Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. European Parliament, Council of the European Union. Available at: http://data.europa.eu/eli/dir/2016/2284/oj
  35. EU (2024): Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe (recast). European Parliament, Council of the European Union. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024L2881
  36. Fares S., Matteucci G., Scarascia Mugnozza G., Morani A., Calfapietra C., Salvatori E., Fusaro L., Manes F., Loreto F. (2013): Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest. Atmospheric Environment, 67: 242-251. Go to original source...
  37. Fares S., Conte A., Chabbi A. (2017): Ozone flux in plant ecosystems: New opportunities for long-term monitoring networks to deliver ozone-risk assessments. Environmental Science and Pollution Research, 25: 8240-8248. Go to original source... Go to PubMed...
  38. Feng Z., De Marco A., Anav A., Gualtieri M., Sicard P., Tian H., Fornasier F., Tao F., Guo A., Paoletti E. (2019): Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 131: 104966. Go to original source... Go to PubMed...
  39. Fuhrer J. (2002): Ozone impacts on vegetation. Ozone: Science & Engineering, 24: 69-74. Go to original source...
  40. Heath R.L. (2008): Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environmental Pollution, 155: 453-463. Go to original source... Go to PubMed...
  41. Heath R.L, Packer L. (1968): Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125: 189-198. Go to original source... Go to PubMed...
  42. Horálek J., Vlasáková L., Schreiberová M., Benešová N., Schneider P., Kurfürst P., Tognet F., Schovánková J., Vlček O., Vivanco M.G., Theobald M., Gil V. (2023). Air quality maps of EEA member and cooperating countries for 2021. PM₁₀, PM₂.₅, O₃, NO₂, NOx and BaP spatial estimates and their uncertainties (Eionet Report - ETC HE 2023/3). European Topic Centre on Human Health and the Environment: 129. Available at: https://zenodo.org/records/10589987
  43. Hoshika Y., Shimizu Y., Omasa K. (2011): A comparison between stomatal ozone uptake and AOT40 of deciduous trees in Japan. iForest - Biogeosciences and Forestry, 4: 128-135. Go to original source...
  44. Hoshika Y., Watanabe M., Inada N., Mao Q., Koike T. (2013): Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure. Environmental Pollution, 182: 242-247. Go to original source... Go to PubMed...
  45. Hůnová I., Schreiberová M. (2012): Ambient ozone phytotoxic potential over the Czech forests as assessed by AOT40. iForest - Biogeosciences and Forestry, 5: 153-162. Go to original source...
  46. Hůnová I., Bäumelt V. (2018): Observation-based trends in ambient ozone in the Czech Republic over the past two decades. Atmospheric Environment, 172: 157-167. Go to original source...
  47. Hůnová I., Novotný R., Uhlířová H., Vráblík T., Horálek J., Lomský B., Šrámek V. (2010): The impact of ambient ozone on mountain spruce forests in the Czech Republic as indicated by malondialdehyde. Environmental Pollution, 158: 2393-2401. Go to original source... Go to PubMed...
  48. Hůnová I., Matoušková L., Srněnský R., Koželková K. (2011): Ozone influence on native vegetation in the Jizerske hory Mts. of the Czech Republic: Results based on ozone exposure and ozone-induced visible symptoms. Environmental Monitoring and Assessment, 183: 501-515. Go to original source... Go to PubMed...
  49. Hůnová I., Brabec M., Malý M. (2019a): What are the principal factors affecting ambient ozone concentrations in Czech mountain forests? Frontiers in Forests and Global Change, 2: 1-13. Go to original source...
  50. Hůnová I., Kurfürst P., Baláková L. (2019b): Areas under high ozone and nitrogen loads are spatially disjunct in Czech forests. Science of the Total Environment, 656: 567-575. Go to original source... Go to PubMed...
  51. Innes J.L., Skelly J.M., Schaub M. (2001): Ozone and Broadleaved Species: A Guide to the Identification of Ozone-induced Foliar Injury. Bern, Haupt: 136.
  52. Jacob D.J., Winner D.A. (2009): Effect of climate change on air quality. Atmospheric Environment, 43: 51-63. Go to original source...
  53. Jacob D.J., Logan J.A., Gardner G.M., Yevich R.M., Spivakovsky C.M., Wofsy S.C., Sillman S., Prather M.J. (1993): Factors regulating ozone over the United States and its export to the global atmosphere. Journal of Geophysical Research, 98: 14 817-14826. Go to original source...
  54. Manzini J., Hoshika Y., Baesso Moura B., Paoletti E. (2023): Exploring a new O3 index as a proxy for the avoidance/tolerance capacity of forest species to tolerate O3 injury. Forests, 14: 901-918. Go to original source...
  55. Matyssek R., Sandermann H.Jr. (2003): Impact of ozone on trees: An ecophysiological perspective. Progress in Botany, 64: 349-404. Go to original source...
  56. Matyssek R., Bytnerowicz A., Karlsson P.E., Paoletti E., Sanz M., Schaub M., Wieser G. (2007): Promoting the O3 flux concept for European forest trees. Environmental Pollution, 146: 587-607. Go to original source... Go to PubMed...
  57. Meleux F., Solmon F., Giorgi F. (2007): Increase in summer European ozone amounts due to climate change. Atmospheric Environment, 41: 7577-7587. Go to original source...
  58. Mills G., Pleijel H., Malley C.S., Sinha B., Cooper O.R., Schultz M.G., Neufeld H.S., Simpson D., Sharps K., Feng Z., Gerosa G., Harmens H., Kobayashi K., Saxena P., Paoletti E., Sinha V., Xu X. (2018): Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa: Science of the Anthropocene, 6: 47. Go to original source...
  59. Mittler R. (2002): Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410. Go to original source... Go to PubMed...
  60. Monks P.S. (2000): A review of the observations and origins of the spring ozone maximum. Atmospheric Environment, 34: 3545-3561. Go to original source...
  61. Moura B.B., Paoletti E., Badea O., Ferrini F., Hoshika Y. (2022): Visible foliar injury and ecophysiological responses to ozone and drought in oak seedlings. Plants, 11: 1836. Go to original source... Go to PubMed...
  62. Nolle M., Ellul R., Heinrich G., Güsten H. (2002): A long-term study of background ozone concentrations in the central Mediterranean - Diurnal and seasonal variations on the island of Gozo. Atmospheric Environment, 36: 1391-1402. Go to original source...
  63. Novotný R., Buriánek V., Šrámek V. (2009): Metodika hodnocení viditelného poškození vegetace vyvolaného účinky přízemního ozonu. Lesnický průvodce 6. Strnady, Forestry and Game Management Research Institute: 48. Available at: https://www.vulhm.cz/files/uploads/2019/03/lp_2009_06.pdf (in Czech).
  64. Novotný R., Šrámek V., Buriánek V. (2010): Evaluation of the ozone injury to ground vegetation within the plots of intensive monitoring in the Czech Republic. Lesnícky časopis - Forestry Journal, 56: 57-67. Available at: http://fj.nlcsk.org/images/pdf/Rocnik_56/Cislo_1_2010/Novotny_akol.pdf
  65. Paoletti E., Alivernini A., Anav A., Badea O., Carrari E., Chivulescu S., Conte A., Ciriani M.L., Dalstein-Richier L., De Marco A., Fares S., Fasano G., Giovannelli A., Lazzara M., Leca S., Materassi A., Moretti V., Pitar D., Popa I., Sabatini F., Salvati L., Sicard P., Sorgi T., Hoshika Y. (2019): Toward stomatal-flux based forest protection against ozone: The MOTTLES approach. Science of the Total Environment, 691: 516-527. Go to original source... Go to PubMed...
  66. Paoletti E., Sicard P., Hoshika Y., Fares S., Badea O., Pitar D., Popa I., Anav A., Baesso Moura B., De Marco A. (2022): Towards long-term sustainability of stomatal ozone flux monitoring at forest sites. Sustainable Horizons, 2: 100018. Go to original source...
  67. Pell E.J., Schlagnhaufer C.D., Arteca R.N. (1997): Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum, 100: 264-273. Go to original source...
  68. Raspe S., Fleck S., Beuker E., Preuhsler T., Bastrup-Birk A. (2020): Meteorological measurements. Version 2020-1. In: UNECE ICP Forests, Programme Co-ordinating Centre (ed.): Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Eberswalde, Thünen Institute of Forest Ecosystems: 39. Available at: https://www.icp-forests.org/pdf/manual/2020/ICP_Manual_part09_2020_Meteorology_version_2020-1.pdf
  69. R Core Team (2020): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at: https://www.R-project.org/
  70. Reif J., Gamero A., Flosek J., Hůnová I. (2023): Ambient ozone - New threat to birds in mountain ecosystems? Science of the Total Environment, 876: 162711. Go to original source... Go to PubMed...
  71. Schaub M., Calatayud V. (2013): Assessment of visible foliar injury induced by ozone. Developments in Environmental Science, 12: 205-221. Go to original source...
  72. Schaub M., Skelly J.M., Zhang J.W., Ferdinand J.A., Savage J.E., Stevenson R.E., Davis D.D., Steiner K.C. (2005): Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Environmental Pollution, 133: 553-567. Go to original source... Go to PubMed...
  73. Schaub M., Calatayud V., Ferretti M., Brunialti G., Lövblad G., Krause G., Sanz M.J., Pitar D., Gottardini E. (2020): Part VIII: Assessment of ozone injury. Version 2020-1. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Eberswalde, Thünen Institute of Forest Ecosystems: 15 + Annex. Available at: https://www.icp-forests.org/pdf/manual/2020/ICP_Manual_part08_2020_Ozone_version_2020-1.pdf
  74. Schraudner M., Langebartels C., Sandermann H. (1997): Changes in the biochemical status of plant cells induced by the environmental pollutant ozone. Physiologia Plantarum, 100: 274-280. Go to original source...
  75. Sicard P., De Marco A., Dalstein-Richier L., Tagliaferro F., Renou C., Paoletti E. (2016): An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of the Total Environment, 541: 729-741. Go to original source... Go to PubMed...
  76. Sicard P., Anav A., De Marco A., Paoletti E. (2017): Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmospheric Chemistry and Physics, 17: 12177-12196. Go to original source...
  77. Sicard P., Hoshika Y., Carrari E., De Marco A., Paoletti E. (2021): Testing visible foliar injury within a light exposed sampling site as a proxy for ozone risk assessment for European forests. Journal of Forestry Research, 32: 1351-1359. Go to original source...
  78. Šrámek V., Novotný R., Bednárová E., Uhlířová H. (2007): Monitoring of ozone risk for forests in the Czech Republic: Preliminary results. The Scientific World Journal, 7: 78-83. Go to original source... Go to PubMed...
  79. Šrámek V., Novotný R., Vejpustková M., Hůnová I., Uhlířová H. (2012): Monitoring of ozone effects on the vitality and increment of Norway spruce and European beech in the Central European forests. Journal of Environmental Monitoring, 14: 1696-1702. Go to original source... Go to PubMed...
  80. The Royal Society (2008): Ground-level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications. RS Policy Document 15/08. London, The Royal Society: 131. Available at: https://royalsociety.org/-/media/policy/publications/2008/7925.pdf
  81. Uhlířová H. (1991): Is it possible to use malondialdehyde content to damage assessment? In: IUFRO and ICP Forests Workshop on Monitoring Air Pollution Impact on Permanent Sample Plots, Data Processing and Results Interpretation, Prachatice, Sept 2-6, 1991: 233-235.
  82. Uhlířová H., Pasuthová J. (1993): Diagnostics of latent air pollution damage to tree species. Lesnictví-Forestry, 39: 73-79.
  83. Vingarzan R. (2004): A review of surface ozone background levels and trends. Atmospheric Environment, 38: 3431-3442. Go to original source...
  84. Vlasáková-Matoušková L., Hůnová I. (2015): Stomatal ozone flux and visible leaf injury in native juvenile trees of Fagus sylvatica L.: A field study from the Jizerské hory Mts., the Czech Republic. Environmental Science and Pollution Research, 22: 10034-10046. Go to original source... Go to PubMed...
  85. Vollenweider P., Ottiger M., Günthardt-Goerg M.S. (2003): Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environmental Pollution, 124: 101-118. Go to original source... Go to PubMed...
  86. Wieser G., Häsler R., Götz B., Koch W., Havranek W.M. (2000): Role of climate, crown position, tree age, and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: A synthesis. Environmental Pollution, 109: 415-422. Go to original source... Go to PubMed...
  87. Wittig V.E., Ainsworth E.A., Naidu S.L., Karnosky D.F., Long S.P. (2009): Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Global Change Biology, 15: 396-424. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.