J. For. Sci., 2025, 71(1):1-9 | DOI: 10.17221/51/2024-JFS

Phytochemical screening and phytotoxic activity of Pinus ponderosa (Dougl.) LawsonOriginal Paper

Mouna Souihi1,2, Marwa Khammassi3, Habiba Kouki1, Ismail Amri1, Mohsen Hanana3, Lamia Hamrouni3, Yassine Mabrouk1
1 Laboratory of Biotechnology and Nuclear Technology (LR16CNSTN01), National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Tunisia
2 Doctoral School of Computer Science, Communications, Design, and Environment (STICODE), Manouba, Tunisia
3 Forest Ecology Laboratory, National Institute for Research in Rural Engineering, Water and Forests, Ariana, Tunisia

Developing natural herbicides offers a potential solution to mitigate the drawbacks associated with synthetic pesticides used in an excessive quantity to safeguard agricultural crops. In this study, essential oils extracted via hydrodistillation from Pinus ponderosa needles were investigated for their chemical composition and phytotoxic activity. Gas chromatography with mass spectrometry detection (GC/MS) identified twenty-three constituents, constituting 93.87% of the total oil. The predominant components were oxygenated monoterpenes (64.66%), with α-pinene (37.78%), β-pinene (24.32%), and sesquiterpenes hydrocarbons, particularly germacrene-D (7.26%). The phytotoxic effects of P. ponderosa essential oil were tested on Phalaris canariensis L., Trifolium campestre Schreb., and Sinapis arvensis L. The essential oil exhibited a significant inhibitory effect on seed germination and seedling growth in a dose-dependent manner. A low concentration of essential oil reduced the germination and seedling growth of all tested weeds. Additionally, the essential oil treatment impacted malondialdehyde content and electrolyte leakage in the seedlings. These preliminary findings suggest that essential oils from forest trees, particularly Pinus ponderosa, could serve as an eco-friendly alternative to chemical herbicides. This approach may contribute to addressing the challenges associated with synthetic pesticides while promoting sustainable and environmentally friendly agricultural practices.

Keywords: essential oil; gas chromatography with mass spectrometry detection (GC, MS); malondialdehyde (MDA); phytotoxic effect; weeds

Received: July 29, 2024; Revised: September 18, 2024; Accepted: September 26, 2024; Prepublished online: January 15, 2025; Published: January 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Souihi M, Khammassi M, Kouki H, Amri I, Hanana M, Hamrouni L, Mabrouk Y. Phytochemical screening and phytotoxic activity of Pinus ponderosa (Dougl.) Lawson. J. For. Sci. 2025;71(1):1-9. doi: 10.17221/51/2024-JFS.
Download citation

References

  1. Amri I., Lamia H., Gargouri S., Hanana M., Mahfoudhi M., Fezzani T., Ezzeddine F., Jamoussi B. (2011): Chemical composition and biological activities of essential oils of Pinus patula. Natural Product Communications, 6: 1531-1536. Go to original source...
  2. Amri I., Gargouri S., Hamrouni L., Hanana M., Fezzani T., Jamoussi B. (2012): Chemical composition, phytotoxic and antifungal activities of Pinus pinea essential oil. Journal of Pest Science, 85: 199-207. Go to original source...
  3. Amri I., Khammassi M., Ben Ayed R., Khedhri S., Mansour M.B., Kochti O., Pieracci Y., Flamini G., Mabrouk Y., Gargouri S., Hanana M., Hamrouni L. (2023): Essential oils and biological activities of Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. Plants, 12: 816. Go to original source... Go to PubMed...
  4. Ayed A., Polito F., Mighri H., Souihi M., Caputo L., Hamrouni L., Amri I., Nazzaro F., De Feo V., Hirsch A.M., Mabrouk Y. (2023): Chemical composition of essential oils from eight Tunisian Eucalyptus species and their antifungal and herbicidal activities. Plants, 12: 3068. Go to original source... Go to PubMed...
  5. Bhattacharya S.N., Gupta R.K., Kamal M.R. (2008): Polymeric Nanocomposites. Munich, Hanser Gardner Publications: 383. Go to original source...
  6. Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D., Huang J. (2017): Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8: 1147. Go to original source... Go to PubMed...
  7. Himejima M., Hobson K.R., Otsuka T., Wood D.L., Kubo I. (1992): Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. Journal of Chemical Ecology, 18: 1809-1818. Go to original source... Go to PubMed...
  8. Hong J., Hong J., Otaki M., Jolliet O. (2009): Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Management, 29: 696-703. Go to original source... Go to PubMed...
  9. Ismail A., Mancini E., De Martino L., Hamrouni L., Hanana M., Jamoussi B., Gargouri S., Scognamiglio M., De Feo V. (2014): Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils. Chemistry & Biodiversity, 11: 150-160. Go to original source... Go to PubMed...
  10. Ismail A., Habiba K., Yassine M., Mohsen H., Bassem J., Lamia H. (2021): Essential oils of Tunisian Pinus radiata D. Don, chemical composition and study of their herbicidal activity. Vietnam Journal of Chemistry, 59: 247-252. Go to original source...
  11. Kapoor D., Rinzim, Tiwari A., Seghal A., Landi M., Brestic M., Sharma A. (2019): Exploiting the allelopathic potential of aqueous leaf extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a widespread weed in India. Plants, 8: 552. Go to original source... Go to PubMed...
  12. Khammassi M., Ayed R.B., Khedhiri S., Souihi M., Hanana M., Amri I., Hamrouni L. (2022): Crude extracts and essential oil of Platycladus orientalis (L.) Franco: A source of phenolics with antioxidant and antibacterial potential as assessed through a chemometric approach. Turkish Journal of Agriculture and Forestry, 46: 477-487. Go to original source...
  13. Khammassi M., Polito F., Kochti O., Kouki H., Souihi M., Khedhri S., Hamrouni L., Mabrouk Y., Amri I., De Feo V. (2023): Investigation on chemical composition, antioxidant, antifungal and herbicidal activities of volatile constituents from Deverra tortuosa (Desf.). Plants, 12: 2556. Go to original source... Go to PubMed...
  14. Khedhri S., Khammassi M., Amri I., Mabrouk Y., Hanana M., Gargouri S., Hamrouni L. (2023): Allopathic potential of essential oil extracts on weeds germination and seedlings growth in sustainable agriculture: The phytochemical study of Tunisia's two Melaleuca species. Vegetos, 37: 165-72. Go to original source...
  15. Kong Q., Zhou L., Wang X., Luo S., Li J., Xiao H., Zhang X., Xiang T., Feng S., Chen T., Yuan M., Ding C. (2021): Chemical composition and allelopathic effect of essential oil of Litsea pungens. Agronomy, 11: 1115. Go to original source...
  16. Krauze-Baranowska M., Mardarowicz M., Wiwart M., Pob³ocka L., Dynowska M. (2002): Antifungal activity of the essential oils from some species of the genus Pinus. Zeitschrift für Naturforschung C, 57: 478-482. Go to original source... Go to PubMed...
  17. Kumar B., Sarkar S. (2020): Efficacy of different post-emergence herbicides in chickpea (Cicer arietinum). International Journal of Chemical Studies, 8: 3036-3039. Go to original source...
  18. Kurose K., Okamura D., Yatagai M. (2007): Composition of the essential oils from the leaves of nine Pinus species and the cones of three of Pinus species. Flavour and Fragrance Journal, 22: 10-20. Go to original source...
  19. Li M., Cha D.J., Lai Y., Villaruz A.E., Sturdevant D.E., Otto M. (2007): The antimicrobial peptide sensing system aps of Staphylococcus aureus. Molecular Microbiology, 66: 1136-1147. Go to original source... Go to PubMed...
  20. Oerke E.C., Steiner U., Dehne H.W., Lindenthal M. (2006): Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany, 57: 2121-2132. Go to original source... Go to PubMed...
  21. Sahu K.K., Sahu S. (2012): Substance abuse causes and consequences. Bangabasi Academic Journal, 9: 52-59.
  22. Sohn J.A., Brooks J.R., Bauhus J., Kohler M., Kolb T.E., McDowell N.G. (2014): Unthinned slow-growing ponderosa pine (Pinus ponderosa) trees contain muted isotopic signals in tree rings as compared to thinned trees. Trees, 28: 1035-1051. Go to original source...
  23. Souihi M., Amri I., Souissi A., Hosmi K., Brahim N.B., Annabi M. (2020a): Essential oil and fatty acid composition of Melissa officinalis L. Progress in Nutrition, 22: 253-258. Go to original source...
  24. Souihi M., Ben Ayed R., Trabelsi I., Khammassi M., Ben Brahim N., Annabi M. (2020b): Plant extract valorization of Melissa officinalis L. for agroindustrial purposes through their biochemical properties and biological activities. Journal of Chemistry, 2020: 9728093. Go to original source...
  25. Souiy Z. (2024): Essential oil extraction process. In: Viskelis J. (ed.): Essential Oils - Recent Advances, New Perspectives and Applications. Biochemistry. Rijeka, IntechOpen: 123-145. Go to original source...
  26. Thoss V., Byers J.A. (2006): Monoterpene chemodiversity of ponderosa pine in relation to herbivory and bark beetle colonization. Chemoecology, 16: 51-58. Go to original source...
  27. Varona S., Martín A., Cocero M.J. (2009): Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chemical Engineering and Processing: Process Intensification, 48: 1121-1128. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.