J. For. Sci., 2025, 71(1):10-22 | DOI: 10.17221/47/2024-JFS

The effect of acorn scarification on the growth and root system size of Quercus robur L. seedlings grown in nursery containersOriginal Paper

Mariusz Kormanek ORCID...1, Paweł Tylek1, Jacek Banach2, Zdzisław Kaliniewicz3
1 Department of Forest Utilization and Forest Techniques, Faculty of Forestry, University of Agriculture in Krakow, Kraków, Poland
2 Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, Kraków, Poland
3 Department of Heavy Duty Machines and Research Methodology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

The mechanical scarification of acorns, although requiring a significant investment of resources, is a process commonly used in container nurseries for seed preparation. Its aim is to increase the number of germinating seeds and to shorten and equalise the length of their germination period. Research results indicate that scarification also affects the production of seedlings with improved biometric parameters. However, there is limited information available on improving the structure of the root system, primarily due to the limited availability of image analysis systems for these plant parts. This study employed modern measurement methods using WinRhizo and WinFolia software (Regent Instruments Inc.; Version Pro, 2022) to comparatively analyse root system parameters, focusing mainly on their structure. The parameters of pedunculate oak (Quercus robur L.) seedlings grown in polystyrene containers were compared with and without mechanical scarification, achieved by manually cutting off part of the acorn. After the end of the growing season, the parameters of all analysed seedlings (200 pieces) were determined, and a detailed analysis of the root system was performed on selected average individuals (64 pieces). Scarification resulted in an increase in the number of germinated seeds and grown seedlings, as well as an increase in the height and diameter of the root collar and a reduction in the variation of the obtained seedlings' parameters. Seedlings grown from scarified seeds were also characterised by a greater number of leaves with larger unit mass, which had smaller dimensions. The root system of seedlings grown from scarified seeds exhibited a higher average diameter and total volume of roots, as well as greater total length, surface area, and volume of fine roots, i.e. in the diameter range: 0.5 < D ≤ 2.0 mm. The obtained results confirmed the positive effect of seed scarification on germination and emergence efficiency, as well as on biometric features and the quality of the grown seedlings.

Keywords: pedunculate oak; polystyrene container; root architecture; seed scarification; WinFolia; WinRhizo

Received: July 10, 2024; Revised: November 5, 2024; Accepted: November 13, 2024; Prepublished online: January 22, 2025; Published: January 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kormanek M, Tylek P, Banach J, Kaliniewicz Z. The effect of acorn scarification on the growth and root system size of Quercus robur L. seedlings grown in nursery containers. J. For. Sci. 2025;71(1):10-22. doi: 10.17221/47/2024-JFS.
Download citation

References

  1. Adamczyk F., Frąckowiak P., Jabłoński M., Juliszewski T., Kiełbasa P., Piłat A., Szaroleta M., Szczepaniak J., Tadeusiewicz R., Tylek P., Walczyk J. (2018): Automat do skaryfikacji żołędzi wraz z identyfikacją zmian chorobowych. Poznań, Przemysłowy Instytut Maszyn Rolniczych: 160. (in Polish)
  2. Andrzejczyk T. (2009): Dąb szypułkowy i bezszypułkowy: Hodowla. Warsaw, PWRiL: 301. (in Polish)
  3. Banach J., Skrzyszewska K., Skrzyszewski J. (2017): Reforestation in Poland: History, current practice and future perspectives. Reforesta, 3: 185-195. Go to original source...
  4. Böhm W. (1985): Metody badania systemów korzeniowych. Warsaw, PWRiL: 267. (in Polish)
  5. Branco M., Branco C., Merouani H., Almeida M. (2002): Germination success, survival and seedling vigour of Quercus suber acorns in relation to insect damage. Forest Ecology and Management, 166: 159-164. Go to original source...
  6. Bubliński Z., Grabska-Chrząstowska J., Jabłoński M., Kwiecień J., Mikrut Z., Pawlik P., Przybyło J., Tadeusiewicz R., Tylek P., Walczyk J. (2017): Ocena zdrowotności automatycznie skaryfikowanych żołędzi za pomocą komputerowej analizy obrazów. Warsaw, Akademicka Oficyna Wydawnicza EXIT: 132. (in Polish)
  7. Campbell S.M., Pearson B.J., Marble C. (2022): Substrate temperature and seed scarification on germination parameters of butterfly pea (Clitoria ternatea). BioRxiv, 2022.02.17.: 480912. Go to original source...
  8. CSO (2005): Statistical Yearbook of Forestry 2005. Warsaw, Central Statistical Office: 356.
  9. CSO (2010): Statistical Yearbook of Forestry 2010. Warsaw, Central Statistical Office: 368.
  10. CSO (2015): Statistical Yearbook of Forestry 2015. Warsaw, Central Statistical Office: 325.
  11. CSO (2020): Statistical Yearbook of Forestry 2020. Warsaw, Central Statistical Office: 368.
  12. CSO (2022): Statistical Yearbook of Forestry 2022. Warsaw, Central Statistical Office: 360.
  13. CSO (2023): Statistical Yearbook of Forestry 2023. Warsaw, Central Statistical Office: 348.
  14. Dyderski M.K., Paź S., Frelich L.E., Jagodziński A.M. (2018): How much does climate change threaten European forest tree species distributions? Global Change Biology, 24: 1150-1163. Go to original source... Go to PubMed...
  15. Farahnak M., Mitsuyasu K., Hishi T., Katayama A., Chiwa M., Jeong S., Otsuki K., Sadeghi S.M.M., Kume A. (2020): Relationship between very fine root distribution and soil water content in pre- and post-harvest areas of two coniferous tree species. Forests, 11: 1227. Go to original source...
  16. García-Cebrián F., Esteso-Martínez J., Gil-Pelegrín E. (2003): Influence of cotyledon removal on early seedling growth in Quercus robur L. Annals of Forest Science, 60: 69-73. Go to original source...
  17. García-Tejera O., López-Bernal Á., Villalobos F.J., Orgaz F., Testi L. (2016): Effect of soil temperature on root resistance: Implications for different trees under Mediterranean conditions. Tree Physiology, 36: 469-478. Go to original source... Go to PubMed...
  18. Giertych M.J., Suszka J. (2011): Consequences of cutting off distal ends of cotyledons of Quercus robur acorns before sowing. Annals of Forest Science, 68: 433-442. Go to original source...
  19. Gocławski J., Sekulska-Nalewajko J., Gajewska E., Wielanek M. (2009): Automatyczny pomiar długości korzeni siewek pszenicy z hodowli hydroponicznej przy wykorzystaniu metod przetwarzania i analizy obrazów. Automatics, 13: 831-847. (in Polish)
  20. Hou X., Yi X., Yang Y., Liu W. (2010): Acorn germination and seedling survival of Q. variabilis: Effects of cotyledon excision. Annals of Forest Science, 67: 711. Go to original source...
  21. Jabłoński M., Tylek P., Walczyk J., Tadeusiewicz R., Piłat A. (2016): Colour-based binary discrimination of scarified Quercus robur acorns under varying illumination. Sensors, 16: 1319. Go to original source... Go to PubMed...
  22. Kaliniewicz Z., Tylek P. (2019): Aspects of the process of sorting European black pine seeds. Forests, 10: 966. Go to original source...
  23. Karaguzel O., Cakmakci S., Ortacesme V., Aydinoglu B. (2004): Influence of seed coat treatments on germination and early seedling growth of Lupinus varius L. Pakistan Journal of Botany, 36: 65-74.
  24. Kaspar T.C., Bland W.L. (1992): Soil temperature and root growth. Soil Science, 154: 290-299. Go to original source...
  25. Kimura E., Islam M.A. (2012): Seed scarification methods and their use in forage legumes. Research Journal of Seed Science, 5: 38-50. Go to original source...
  26. Kormanek M. (2013): Determination of the impact of soil compaction on germination and seedling growth parameters of common beech in the laboratory conditions. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 12: 15-27.
  27. Kormanek M., Gołąb J. (2021): Analysis of surface deformation and physical and mechanical parameters of soils on selected skid trails in the Gorce National Park. Forests, 12: 797. Go to original source...
  28. Kormanek M., Banach J., Leńczuk D. (2013a): Determination of the impact of soil compaction on growth performance and quality of seedlings of European beech Fagus sylvatica L. grown in the laboratory conditions. In: Mobile Energy Systems - Hydraulics - Environment - Ergonomics of Mobile Machines. Zvolen, Technical University in Zvolen: 67-78.
  29. Kormanek M., Banach J., Ryba M. (2013b): Wpływ zagęszczenia podłoża w kontenerach szkółkarskich na parametry wzrostowe sadzonek sosny zwyczajnej (Pinus sylvestris L.). Leśne Prace Badawcze, 74: 307-314. (in Polish) Go to original source...
  30. Kormanek M., Banach J., Sowa P. (2015a): Effect of soil bulk density on forest tree seedlings. International Agrophysics, 29: 67-74. Go to original source...
  31. Kormanek M., Głąb T., Banach J., Szewczyk G. (2015b): Effects of soil bulk density on sessile oak Quercus petraea Liebl. seedlings. European Journal of Forest Research, 134: 969-979. Go to original source...
  32. Kormanik P.P., Sung S.S., Kormanik T.L., Schlarbaum S.E., Zarnoch S.J. (1998): Effect of acorn size on development of northern red oak 1-0 seedlings. Canadian Journal of Forest Research, 28: 1805-1813. Go to original source...
  33. Luszniewicz A., Słaby T. (2003): Statystyka z pakietem Statistica PL. Warsaw, Wydawnictwo C.H. Beck: 445. (in Polish)
  34. Makita N., Hirano Y., Mizoguchi T., Kominami Y., Dannoura M., Ishii H., Finér L., Kanazawa Y. (2011): Very fine roots respond to soil depth: Biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecological Research, 26: 95-104. Go to original source...
  35. Maldonado-Arciniegas F., Ruales C., Caviedes M., Ramírez D.X., León-Reyes A. (2018): An evaluation of physical and mechanical scarification methods on seed germination of Vachellia macracantha (Humb. & Bonpl. ex Willd.) Seigler & Ebinger. Acta Agronomica, 67: 120-125. Go to original source...
  36. Metcalfe D., Meir P., Aragão L., Costa A.C., Braga A., Gonçalves P., Silva J.J., Almeida S., Dawson L., Malhi Y., Williams M. (2008): The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311: 189-199. Go to original source...
  37. Montaño-Arias S.A., Camargo-Ricalde S.L., Grether R., Díaz-Pontones D. (2015): Effect of scarification and temperature on seed germination of two Mexican species of Mimosa (Leguminosae-Mimosoideae). Botanical Sciences, 93: 649-659. Go to original source...
  38. Monteiro H.L., Ferreira A.F., Faria G., Rodrigues M., Boliani A. (2021): Influence of scarification and gibberellic acid on seed dormancy and germination of pomegranate seedlings. Revista de Investigación Agraria y Ambiental, 12: 25-37. Go to original source...
  39. Nicola S. (1998): Understanding root systems to improve seedling quality. HortTechnology, 8: 1-6. Go to original source...
  40. Pająk K., Kormanek M., Małek S., Banach J. (2022a): Effect of peat-perlite substrate compaction in Hiko V265 trays on the growth of Fagus sylvatica L. seedlings. Sustainability, 14: 4585. Go to original source...
  41. Pająk K., Małek S., Kormanek M., Banach J. (2022b): Effect of peat substrate compaction on growth parameters and root system morphology of Scots pine Pinus sylvestris L. seedlings. Sylwan, 166: 2537-550.
  42. Pająk K., Małek S., Kormanek M., Jasik M. (2022c): The effect of peat substrate compaction on the macronutrient content of Scots pine Pinus sylvestris L. container seedlings. Sylwan, 166: 537-550.
  43. Pająk K., Małek S., Kormanek M., Jasik M., Banach J. (2022d): Macronutrient content in European beech (Fagus sylvatica L.) seedlings grown in differently compacted peat substrates in a container nursery. Forests, 13: 1793. Go to original source...
  44. Pawlik Ł., Šamonil P. (2018): Biomechanical and biochemical effects recorded in the tree root zone - Soil memory, historical contingency and soil evolution under trees. Plant Soil, 426: 109-134. Go to original source...
  45. Ponton S., Dupouey J.L., Dreyer E. (2004): Leaf morphology as species indicator in seedlings of Quercus robur L. and Q. petraea (Matt.) Liebl.: Modulation by irradiance and growth flush. Annals of Forest Science, 61: 73-80. Go to original source...
  46. Rabiej M. (2012): Statystyka z programem Statistica. Gliwice, Wydawnictwo Helion: 343. (in Polish)
  47. Skrzyszewska K., Banach J., Bownik G. (2019): Impact of pre-sowing acorn preparation and the time of sowing on the seed germination and growth of pedunculate oak seedlings. Sylwan, 163: 716-725. (in Polish)
  48. SRP (2004): Dz.U. 2004 nr 31, poz. 272. Rozporządzenie Ministra Środowiska z dnia 18 lutego 2004 r. w sprawie szczegółowych wymagań, jakie powinien spełniać leśny materiał rozmnożeniowy. Warsaw, Sejm Rzeczypospolitej Polskiej: 1700-1704. Available at: https://isap.sejm.gov.pl/isap.Nsf/DocDetails.xsp?id=WDU20040310272 (accessed May 7, 2024; in Polish).
  49. Suszka B. (2006): Rozmnażanie generatywne. In: Bugała W. (ed.): Dęby. Poznań - Kórnik, Bogucki Wydawnictwo Naukowe: 305-388. (in Polish)
  50. Suszka B., Bonnet-Masimbert M., Muller C. (2000): Nasiona leśnych drzew liściastych: Od zbioru do siewu. Warsaw, Wydawnictwo Naukowe PWN: 308. (in Polish)
  51. Szabla K., Pabian R. (2003): Szkółkarstwo kontenerowe: Nowe technologie i techniki w szkółkarstwie leśnym. Warsaw, Centrum Informacyjne Lasów Państwowych: 212. (in Polish)
  52. Tadeusiewicz R., Tylek P., Adamczyk F., Kiełbasa P., Jabłoński M., Bubliński Z., Grabska-Chrząstowska J., Kaliniewicz Z., Walczyk J., Szczepaniak J. (2017): Assessment of selected parameters of the automatic scarification device as an example of a device for sustainable forest management. Sustainability, 9: 2370. Go to original source...
  53. Tadeusiewicz R., Jabłoński M., Mikrut Z., Przybyło J., Piłat A., Turnau A, Klocek J., Walczyk J., Tylek P., Juliszewski T., Kiełbasa P., Szczepaniak J., Adamczyk F., Frąckowiak P., Wąchalski G. (2018): A system for automatic scarification and assessment of vitality of seeds and a method for automatic scarification and assessment of vitality of seeds. European Patent No. 3172954. Aug 28, 2018.
  54. Tylek P. (2012): Wielkość i kształt jako cechy rozdzielcze nasion dębu szypułkowego (Quercus robur L.). Acta Agrophysica, 19: 673-687. (in Polish)
  55. Tylek P., Tadeusiewicz R., Jabłoński M., Piłat A., Kaliniewicz Z., Adamczyk F., Klocek J. (2021): Systemy wizyjne automatu do przedsiewnego przygotowania żołędzi. Przegląd Elektrotechniczny, 1: 188-191. (in Polish) Go to original source...
  56. Xinyue K. (2022): Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13: 1-16. Go to original source... Go to PubMed...
  57. Yi X., Zhang J., Wang Z. (2015): Large and small acorns contribute equally to early-stage oak seedlings: A multiple species study. European Journal of Forest Research, 134: 1019-1026. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.