J. For. Sci., 2024, 70(12):619-633 | DOI: 10.17221/48/2024-JFS

A GLMER-based pedotransfer function expressing the relationship between total organic carbon and bulk density in forest soilsOriginal Paper

Václav Zouhar1, Aleš Kučera2, Karel Drápela3
1 Forest Management Institute – Brandýs nad Labem, Brno branch, Brno, Czech Republic
2 Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
3 Institute of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

Owing to its role in mitigating CO2 in the atmosphere, the total organic carbon (TOC) stock of soil, a key component of the terrestrial carbon cycle, is of significant interest as regards climate change. To determine TOC stock, it is first necessary to determine the soil's bulk density (BD), determined through intact soil sampling; however, in forest soils, it can be difficult to determine BD in soils with high levels of stoniness and/or tree root coverage. Furthermore, the method is time-consuming and labour-intensive, making it impractical for studies over large areas. In such cases, BD can be determined using a pedotransfer function (PTF) expressing the relationship between forest soil TOC and BD. The aim of this study was to determine a forest soil PTF using actual data obtained from 777 soil pits dug as part of the Czech Republic's National Forest Inventory (NFI). Within the NFI, BD is assessed from undisturbed core samples, while TOC is assessed from mixed samples from the same soil genetic horizons. Both generalised linear (GLM) and generalised linear mixed-effects (GLMER) models were used, with the final GLMER model best expressing the relationship for individual natural forest areas within the NFI dataset. The GLMER-based PTF described in this study can be widely applied to accurately estimate soil BD via TOC concentration at temperate forest sites where stoniness and/or root cover previously made it technically impossible to take undisturbed samples using standard methods.

Keywords: carbon stock; climate change; Czech National Forest Inventory; Czech natural forest areas; soil properties; soil stoniness

Received: July 11, 2024; Revised: September 24, 2024; Accepted: October 21, 2024; Prepublished online: December 17, 2024; Published: December 19, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zouhar V, Kučera A, Drápela K. A GLMER-based pedotransfer function expressing the relationship between total organic carbon and bulk density in forest soils. J. For. Sci. 2024;70(12):619-633. doi: 10.17221/48/2024-JFS.
Download citation

Supplementary files:

Download file48-2024-JFS_ESM.pdf

File size: 57.14 kB

References

  1. Akaike H. (1974): A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19: 716-723. Go to original source...
  2. Al-Shammary A.A.G., Kouzani A.Z., Kaynak A., Khoo S.Y., Norton M., Gates W. (2018): Soil bulk density estimating methods: A review. Pedosphere, 28: 581-596. Go to original source...
  3. Andreetta A., Chelli S., Bonifacio E., Canullo R., Cecchini G., Carnicelli S. (2023): Environmental and pedological factors influencing organic carbon storage in Italian forest soils. Geoderma Regional, 32: 1-12. Go to original source...
  4. Bates D., Maechler M., Bolker B., Walker S., Bojesen R.H., Singmann H., Dai B., Scheipl F., Grothendieck G., Green P. (2023): Linear Mixed-Effects Models Using 'Eigen' and S4. Version 1.1-34. CRAN. Available at: https://cran.r-project.org/web/packages/lme4/lme4.pdf
  5. Bittelli M., Tomei F., Anbazhagan P., Pallapati R.R., Mahajan P., Meisina P, Bordoni M., Valentino R. (2021): Measurement of soil bulk density and water content with time domain reflectometry: Algorithm implementation and method analysis. Journal of Hydrology, 598: 1-11. Go to original source...
  6. Bu X., Ruan H., Wang L., Ma W., Ding J., Yu X. (2012): Soil organic matter in density fractions as related to vegetation changes along an altitude gradient in the Wuyi Mountains, southeastern China. Applied Soil Ecology, 52: 42-47. Go to original source...
  7. Buczko U., Cruz-García R., Harmuth J., Kalbe J., Scharnweber T., Stoll A., Wilmking M., Jurasinski G. (2023): Soil and vegetation factors affecting carbon storage in a coastal forest in NE Germany. Geoderma Regional, 33: 1-12. Go to original source...
  8. Chen F., Feng P., Harrison M.T., Wang B., Liu K., Zhang C., Hu K. (2023): Cropland carbon stocks driven by soil characteristics, rainfall and elevation. Science of the Total Environment, 862: 1-11. Go to original source... Go to PubMed...
  9. Cheng J., Huang C., Gan X., Peng C., Deng L. (2023): Can forest carbon sequestration offset industrial CO2 emissions? A case study of Hubei Province, China. Journal of Cleaner Production, 426: 139147. Go to original source...
  10. Crnobrna B., Llanqui I.B., Cardenas A.D., Panduro Pisco G. (2022): Relationships between organic matter and bulk density in Amazonian peatland soils. Sustainability, 14: 1-14. Go to original source...
  11. Davidson E., Janssens I. (2006): Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165-173. Go to original source... Go to PubMed...
  12. De Souza E., Fernandes Filho E.I., Schaefer C.E.G.R., Batjes N.G., dos Santos G.R., Pontes L.M. (2016): Pedotransfer function to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Scienta Agricola, 73: 525-534. Go to original source...
  13. Demek J., Mackovčin P., Balatka B., Buček A., Cibulková P., Culek M., Čermák P., Dobiáš D., Havlíček M., Hrádek M., Kirchner K., Lacina J., Pánek T., Slavík P., Vašátko J. (2006): Hory a nížiny. Zeměpisný lexikon ČR. 2nd Ed. Brno, Ministry of the Environment of the Czech Republic: 582. (in Czech)
  14. Drewnik M. (2006): The effect of environmental conditions on the decomposition rate of cellulose in mountain soils. Geoderma, 132: 116-130. Go to original source...
  15. FAO (2020): Global Forest Resources Assessment 2020. Main Report. Rome, Food and Agriculture Organization of the United Nations: 184. Available at: https://openknowledge.fao.org/items/d6f0df61-cb5d-4030-8814-0e466176d9a1
  16. Ferreiro-Domínguez N., Palma J.H.N., Paulo J.A., Rigueiro-Rodríguez A., Mosquera-Losada M.R. (2022): Assessment of soil carbon storage in three land use types of a semi-arid ecosystem in south Portugal. Catena, 213: 1-10. Go to original source...
  17. FMI (2024): National Forest Inventory. Brandýs nad Labem, Forest Management Institute. Available at: https://www.uhul.cz/portfolio/nil/?lang=en
  18. Harbo L.S., Olesen J.E., Liang Z., Christensen B.T., Elsgaard L. (2022): Estimating organic carbon stocks of mineral soils in Denmark: Impact of bulk density and content of rock fragments. Geoderma Regional, 30: 1-7. Go to original source...
  19. Huntington T.G., Johnson C.E., Johnson A.H., Siccama T.G., Ryan D.F. (1989): Carbon, organic matter, and bulk density relationships in a forested spodosol. Soil Science, 148: 380-386. Go to original source...
  20. Koorneef G.J., de Goede R.G.M., Pulleman M.M., van Leeuwen A.G., Barré P., Baudin F., Comans R.N.J. (2023): Quantifying organic carbon in particulate and mineral-associated fractions of calcareous soils - A method comparison. Geoderma, 436: 116558. Go to original source...
  21. Krahl I., Siewert C., Wiesmeier M., Kalbitz K. (2023): Relationships between soil organic carbon fractions and their thermal stability in forest soils (Bavaria, Germany). Geoderma Regional, 35: e00712. Go to original source...
  22. Kučera A., Vavříček D., Drápela K., Zouhar V., Friedl M., Vranová V. (2024): Approximation of relationship between bulk density and organic carbon content in forest soils using generalised linear mixed models. (manuscript under review)
  23. Kupka D., Pan K., Pietrzykowski M., Kraj W., Gruba P. (2023): Effect of warming on ground vegetation in Carpathian Norway spruce stands, exemplified by European blueberry (Vaccinium myrtillus L.) nutrient stoichiometry. Science of the Total Environment, 896: 1-13. Go to original source... Go to PubMed...
  24. Lloyd J. (1999): The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interaction with soil nutrient status, II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Functional Ecology, 13: 439-459. Go to original source...
  25. Lorenz K., Lal R. (2010): Introduction. In: Lorenz K., Lal R. (eds): Carbon Sequestration in Forest Ecosystems. Dordrecht, Springer: 1-21. Go to original source...
  26. Lüdecke D., Makowski D., Ben-Shachar M.S., Patil I., Waggoner P., Wiernik B., Thériault R., Arel-Bundock V., Jullum M., Bacher E. (2024): Assessment of Regression Models Performance, Version 0.10.9. CRAN. Available at: https://cran.r-project.org/web/packages/performance/performance.pdf
  27. Mäkipää R., Abramoff R., Adamczyk B., Baldy V., Biryol C., Bosela M. Casals P., Yuste J.C., Dondini M., Filipek S., Garcia-Pausas J., Gros R., Gömöryová E., Hashimoto S., Hassegawa M., Immonen P., Laiho R., Li H., Li Q., Luyssaert S., Menival C., Mori T., Naudts K., Santonja M., Smolander A., Toriyama J., Tupek B., Ubeda X., Verkerk P.J., Lehtonen A. (2023): How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests? - A review. Forest Ecology and Management, 529: 1-24. Go to original source...
  28. Meloun M., Militký J., Hill M. (2005): Počítačová analýza vícerozměrných dat v příkladech. Prague, Academia: 449. (in Czech)
  29. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.S., Cheng K., Das B.S., Field D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M., McConkey B.G., Mulder V.L., O'Rourke S., Richer-de-Forges A.C., Odeh I., Padarian J., Paustian K., Pan G., Poggio L., Savin I., Stolbovoy V., Stockmann U., Sulaeman Y., Tsui C.C., Vågen T.G., van Wesemael B., Winowiecki L. (2017): Soil carbon 4 per mille. Geoderma, 292: 59-86. Go to original source...
  30. Nanko K., Ugawa S., Hashimoto S., Imaya A., Kobayashi M., Sakai H., Ishizuka S., Miura S., Tanaka N., Takahashi M., Kaneko S. (2014): A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma, 213: 36-45. Go to original source...
  31. Palladino M., Romano N., Pasolli E., Nasta P. (2022): Developing pedotransfer functions for predicting soil bulk density in Campania. Geoderma, 412: 1-13. Go to original source...
  32. Patton N.R., Lohse K.A., Seyfried M., Will R., Benner S.G. (2019): Lithology and coarse fraction adjusted bulk density estimates for determining total organic carbon stocks in dryland soils. Geoderma, 337: 844-852. Go to original source...
  33. Périé C., Ouimet R. (2008): Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88: 315-325. Go to original source...
  34. Plíva K., Žlábek I. (1986): Přírodní lesní oblasti ČSR. Prague, Státní zemědělské nakladatelství: 316. (in Czech)
  35. R Core Team (2020): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at: http://www.R-project.org
  36. Roth E.M., Karhu K., Koivula M., Helmisaari H.S., Tuittila E.S. (2023): How do harvesting methods applied in continuous-cover forestry and rotation forest management impact soil carbon storage and degradability in boreal Scots pine forests? Forest Ecology and Management, 544: 1-13. Go to original source...
  37. Sahu C., Mishra R., Basti S. (2023): Land-use change affects carbon storage and lability in tropical soil of India. Geoderma Regional, 32: 1-9. Go to original source...
  38. Sakin E. (2012): Organic carbon organic matter and bulk density relationships in arid-semi arid soils in Southeast Anatolia region. African Journal of Biotechnology, 11: 1373-1377. Go to original source...
  39. Sarkodie V.Y.O., Vašát R., Pouladi N., Šrámek V., Sáňka M., Fadrhonsová V., Neudertová Hellebrandová K., Borůvka L. (2023): Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic. Geoderma Regional, 34: 1-9. Go to original source...
  40. Scharlemann J.P.W., Tanner E.V.J., Hiederer R., Kapos V. (2014): Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5: 81-91. Go to original source...
  41. Schimel D., Stephens B.B., Fisher J.B. (2015): Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, 112: 436-441. Go to original source... Go to PubMed...
  42. Sevastas S., Gasparatos D., Botsis D., Siarkos I., Diamantaras K.I., Bilas G. (2018): Predicting bulk density using pedotransfer functions for soils in the Upper Anthemountas basin, Greece. Geoderma Regional, 14: 1-11. Go to original source...
  43. Stavi I., Ungar E.D., Lavee H., Sarah P. (2008): Grazing-induced spatial variability of soil bulk density and content of moisture, organic carbon and calcium carbonate in a semi-arid rangeland. Catena, 75: 288-296. Go to original source...
  44. Szatmári G., Pásztor L., Laborczi A., Illés G., Bakacsi Z., Zacháry D., Filep T., Szalai Z., Jakab G. (2023): Countrywide mapping and assessment of organic carbon saturation in the topsoil using machine learning-based pedotransfer function with uncertainty propagation. Catena, 227: 1-11. Go to original source...
  45. Tashi S., Singh B., Keitel C., Adams M. (2016): Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology, 22: 2255-2268. Go to original source... Go to PubMed...
  46. Teixeira C.S., Holland-Moritz H., Bayer C., Granada C.E., Sausen T.L., Tonial F., Petry C., Frey S.D. (2024): Land management of formerly subtropical Atlantic Forest reduces soil carbon stocks and alters microbial community structure and function. Applied Soil Ecology, 195: 1-11. Go to original source...
  47. Tellen V.A., Yerima B.P.K. (2018): Effect of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental System Research, 7: 1-29. Go to original source...
  48. Throop H.L., Archer S.R., Monger H.C., Waltman S. (2012): When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments, 77: 66-71. Go to original source...
  49. Valjavec M.B., Čarni A., Žlindra D., Zorn M., Marinšek A. (2022): Soil organic carbon stock capacity in karst dolines under different land uses. Catena, 218: 1-10. Go to original source...
  50. Van Looy K., Bouma J., Herbst M., Koestel J., Minasny B., Mishra U., Montzka C., Nemes A., Pachepsky Y.A., Padarian J., Schaap M.G., Tóth B., Verhoef A., Vanderborght J., Van der Ploeg M.J., Weihermüller L., Zacharias S., Zhang Y., Vereecken H. (2017): Pedotransfer functions in Earth system science: Challenges and perspectives. Reviews of Geophysics, 55: 1199-1256. Go to original source...
  51. Walter K., Don A., Tiemeyer B., Freibauer A. (2016): Determining soil bulk density for carbon stock calculations: A systematic method comparison. Soil Science Society of America Journal, 80: 579-591. Go to original source...
  52. Wani O.A., Kumar S.S., Hussain N., Wani A.I.A., Babu S., Alam P., Rashid M., Popescu S.M., Mansoor S. (2023): Multi-scale processes influencing global carbon storage and land-carbon-climate nexus: A critical review. Pedosphere, 33: 250-267. Go to original source...
  53. Waqas M.A., Li Y., Smith P., Wang X., Ashraf M.N., Noor M.A., Amou M., Shi S., Zhu Y., Li J., Wan Y., Qin X., Gao Q., Liu S. (2020): The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. Journal of Cleaner Production, 268: 1-11. Go to original source...
  54. Wickham H., Lionel H., Pedersen T.L., Takahashi K., Wilke C., Woo K., Yutani H., Dunnington D., van den Brand T. (2020): Create Elegant Data Visualisations Using the Grammar of Graphics. Package Ggplot2 Version 3.5.0 for R Software for Statistical Computing. CRAN. Available at: Https://Ggplot2.Tidyverse.Org/
  55. Wiesmeier M., Prietzel J., Barthold F., Spörlein P., Geuß U., Hangen E., Reischl A., Schilling B., Lützow M., Kögel-Knabner I. (2013): Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) - Implications for carbon sequestration. Forest Ecology and Management, 295: 162-172. Go to original source...
  56. Wu G., Huang G., Lin S., Huang Z., Cheng H., Su Y. (2024): Changes in soil organic carbon stocks and its physical fractions along an elevation in a subtropical mountain forest. Journal of Environmental Management, 351: 119823. Go to original source... Go to PubMed...
  57. Xiao L., Leng M., Greenwood P., Zhao R., Xie Z., You Z., Liu J. (2024): Temporal and vertical dynamics of carbon accumulation potential under grazing-excluded grasslands in China: The role of soil bulk density. Journal of Environmental Management, 351: 1-12. Go to original source... Go to PubMed...
  58. Ziegler C., Kulawska A., Kourmouli A., Hamilton L., Shi Z., MacKenzie A.R., Dyson R.J., Johnston I.G. (2023): Quantification and uncertainty of root growth stimulation by elevated CO2 in a mature temperate deciduous forest. Science of the Total Environment, 854: 158661. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.