J. For. Sci., 2024, 70(11):545-559 | DOI: 10.17221/52/2024-JFS
Soil temperature dynamics in the forest shelterbelt and in the fieldOriginal Paper
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
This study compares soil temperature data collected between 2019 and 2022 in Hrušky, South Moravia, Czech Republic. Soil temperature was measured at five depths (5, 10, 20, 50, 100 cm) in the forest shelterbelt (windbreak) and at three distances from it to investigate the impact of the shelterbelt on the climatic conditions of adjacent field plots. In particular, monthly averages, calculated from average daily temperatures, were employed to characterise the temperature course. These are calculated as averages of measured temperatures at 15-minute intervals. Absolute and relative differences and, where appropriate, base indices, were calculated to facilitate the comparison of individual measurement points (sites) and soil depths. The soil temperature values and their dynamics during the year differ between the measurement point in the forest shelterbelt (90-0) and those in the field. Additionally, the field measurement points exhibit some degree of variation, with the more distant field measurement point (180-90) displaying distinct characteristics from the closer field measurement points (90-45, 90-90). During the winter months (December, January, February), the temperature increases with soil depth, being highest within the windbreak. In spring (February and March), the temperature at different soil depths starts to equalise; however, in April, the temperature decreases with soil depth. Throughout the summer, the measurement station within the windbreak has lower temperatures than in the field, where the soil shows higher temperatures at all depths compared to the windbreak measurement station. In August, the temperature differences in depth begin to equalise again. In September, the temperature trend reverses, and from October, the temperatures increase with soil depth, especially in the lower layers of the soil. The temperature trend in November has a more or less winter character. Soil temperatures in the forest shelterbelt are lower in the summer months and higher in the winter months than in the field. The protective effect of the windbreak is more pronounced at measurement stations closer to the belt, as the temperatures at the farthest field measurement station are higher in summer and lower in winter compared to the closer field measurement stations.
Keywords: agriculture landscape; field microclimate; windbreaks
Received: July 29, 2024; Revised: September 29, 2024; Accepted: October 1, 2024; Prepublished online: November 11, 2024; Published: November 25, 2024 Show citation
References
- Bedrna Z., Fulajtár E., Zrubec F., Juráni B. (1989): Pôdne režimy. Bratislava, Veda: 188. (in Slovak)
- Blažek J. (2013): Vliv větrolamů na okolní prostředí s důrazem na jejich klimatickou funkci. [BA Thesis.] Brno, Mendel University in Brno. (in Czech)
- Brandle J.R., Hodges L., Zhou X.H. (2004): Windbreaks in North American agricultural systems. Agroforestry Systems, 61: 65-78. Available at: https://link.springer.com/article/10.1023/B:AGFO.0000028990.31801.62
Go to original source...
- Buček A., Lacina J. (1999): Geobiocenologie II. Brno, Mendel University in Brno: 249. (in Czech)
- Buchan G.D. (2001): Soil temperature regime. In: Smith K.A., Mullins C.E. (eds): Soil and Environmental Analysis: Physical Methods. New York, Marcel Dekker: 539-594.
Go to original source...
- Caborn J.M. (1957): Shelterbelts and Microclimate. Forestry Commission Bulletin No. 29. Edinburgh, Her Majesty's Stationery Office: 134.
- Campi P., Palumbo A.D., Mastrorilli M. (2009): Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment. European Journal of Agronomy, 30: 220-227.
Go to original source...
- Cellier P., Richard D., Robin P. (1996): Partition of sensible heat fluxes into the bare soil and the atmosphere. Agricultural and Forest Meteorology, 82: 245-265.
Go to original source...
- Cleugh H.A., Hughes D.E. (2002): Impact of shelter on crop microclimates: A synthesis of results from wind tunnel and field experiments. Australian Journal of Experimental Agriculture, 42: 679-701.
Go to original source...
- Culek M., Grulich V., Laštůvka Z., Divíšek J. (2013): Biogeografické regiony České republiky. Brno, Masaryk University in Brno: 450. (in Czech)
Go to original source...
- Deng R., Li Y., Zhang S., Wang W., Shi X. (2011): Assessment of the effects of the shelterbelt on the soil temperature at regional scale based on MODIS data. Journal of Forestry Research, 22: 65-70.
Go to original source...
- Drew R.L.K. (1982): The effect of irrigation and of shelter from wind on emergence of carrot and cabbage seedlings. Journal of Horticulture and Biotechnology, 57: 215-220.
Go to original source...
- Forman R.T.T., Godron M. (1993): Krajinná ekologie. Prague, Academia: 583. (in Czech)
- Green F.H.W., Harding R.J., Olivier H.R. (1984): The relationship of soil temperature to vegetation height. Journal of Climatology, 4: 229-240.
Go to original source...
- Haslbach J., Vaculík R. (1980): Půdoznalství. Brno, Vysoká škola zemědělská v Brně: 159. (in Czech)
- Jackson R.B., Jobbágy E.G., Avissar R., Roy S.B., Barrett D.J., Cook C.W., Farley K.A., Le Maitre D.C., McCarl B.A., Murray B.C. (2005): Trading water for carbon with biological carbon sequestration. Science, 310: 1944-1947.
Go to original source...
Go to PubMed...
- Jandák J., Pokorný E., Prax A. (2010): Půdoznalství. Brno, Mendel University in Brno: 143. (in Czech)
- Janík R. (2005): Dynamics of soil temperature and its influence on biomass production of herb layer in a submontane beech forest. Journal of Forest Science, 51: 276-282.
Go to original source...
- Jarvis P.G. (1985): Transpiration and assimilation of tree and agricultural crops: The 'omega factor'. In: Cannel M.G.R., Jackson J.E. (eds): Attributes of Trees as Crop Plants. Kendal, Titus Wilson & Son Ltd.: 441-459.
- Kimmins J.P. (1987): Forest Ecology: A Foundation for Sustainable Forest Management and Environmental Ethics in Forestry. 3rd Ed. New Jersey, Benjamin Cummings: 720.
- Krčmářová J., Středová H., Pokorný R., Středa T. (2013): Specifics of soil temperature under winter wheat canopy. Contributions to Geophysics and Geodesy, 43: 209-223.
Go to original source...
- Krčmářová J., Středa T., Pokorný R. (2014): Specifics of soil temperature under winter oilseed rape canopy. Contributions to Geophysics and Geodesy, 44: 205-208.
Go to original source...
- Kupka I., Podrázský V. (2010): Vliv druhového složení porostů na zalesněné zemědělské půdě na pedofyzikální vlastnosti a poutání uhlíku v povrchových horizontech. In: Knott R., Peňáz J., Vaněk P. (eds): Pěstování lesů v nižších vegetačních stupních, Křtiny, Sept 6-8, 2010: 71-76. (in Czech)
- Laník J., Halada J. (1960): Kniha o půdě 1: Půda a rostlina. Prague, SZN: 259. (in Czech)
- Larcher W. (1988): Fyziologická ekologie rostlin. 1st Ed. Prague, Academia: 368. (in Czech)
- Lehnert M. (2014): Factors affecting soil temperature as limits of spatial interpretation and simulation of soil temperature. Acta Universitatis Palackianae Olomucensis - Geographica, 45: 5-21.
- Litschmann T., Rožnovský J. (2004): Vliv větrolamu na proudění vzduchu. In: Novák V. (ed.): Transport vody, chemikálií a energie v systéme pôda-rastlina-atmosféra. Bratislava, Nov 9, 2004: 2-13. (in Czech)
- Možný M. (1991): Teplotní režim půd v české chmelařské oblasti. Meteorologické zprávy, 44: 115-120. (in Czech)
- Nosek M. (1972): Metody v klimatologii. Prague, Academia: 433. (in Czech)
- Podhrázská J., Dufková J. (2005): Protierozní ochrana půdy. 1st Ed. Brno, Mendelova zemědělská a lesnická univerzita v Brně: 95. (in Czech)
- Podhrázská J., Novotný I., Rožnovský J., Hradil M., Toman F., Dufková J., Macků J., Krejčí J., Pokladníková H., Středa T. (2008): Optimalizace funkcí větrolamu v zemědělské krajině. Uplatněná certifikovaná metodika. Prague, Výzkumný ústav meliorací a ochrany půdy: 24. (in Czech)
- Pokladníková H., Rožnovský J. (2007): Method of completing missing data of soil temperature. Contributions to Geophysics and Geodesy, 37: 263-274.
- Poleno Z., Vacek S., Podrázský V., Remeš J., Mikeska M., Kobliha J., Bílek L., Baláš M. (2011): Pěstování lesů I. Ekologické základy pěstování lesů. Kostelec nad Černými lesy, Lesnická práce: 320. (in Czech)
- Song Y.T., Zhou D.W., Zhang H.X., Li G.D., Jin Y.H., Li Q. (2013): Effects of vegetation height and density on soil temperature variations. Chinese Science Bulletin, 58: 907-912.
Go to original source...
- Spurr S.H., Barnes B.V. (1973): Forest Ecology. 2nd Ed. New York, Ronald: 571.
- Středová H., Bokwa A., Dobrovolný P., Krédl Z., Krahula L., Litschmann T., Pokorný R., Rožnovský J., Středa T., Vysoudil M. (2011): Mikroklima a mezoklima měst, mikroklima porostů. Prague, Czech Hydrometeorological Institute: 120. (in Czech)
- Středová H., Fukalová P., Lehnert M., Rožnovský J., Středa T. (2014): Teplota půdy. Práce a studie, sešit č. 36. Prague, Czech Hydrometeorological Institute: 71. (in Czech)
- Středová H., Středa T., Litschmann T., Rožnovský J. (2016): Metodika měření mikroklimatických poměrů zemědělských plodin a kultur. Brno, Mendel University in Brno: 43. (in Czech)
- Sus N.I. (1950): Ochranné zalesňování v SSSR. Prague, Brázda: 161. (in Czech)
- Trnka P. (2003): Historie, současnost a perspektiva větrolamů. AgroMagazín, 4: 31-33. (in Czech)
- Uhlíř P. (1961): Meteorologie a klimatologie v zemědělství. Prague, Czechoslovak Academy of Agricultural Sciences in cooperation with SZN: 402. (in Czech)
- Uhrecký I. (1962): Studium tepelných vlastností. [Ph.D. Thesis.] Brno, Mendel University in Brno. (in Czech)
- Vavříček D., Kučera A. (2017): Základy lesnického půdoznalství a výživy lesních dřevin. Kostelec nad Černými lesy, Lesnická práce: 364. (in Czech)
- Vopravil J., Formánek P., Heřmanovská D., Khel T., Jacko K. (2022): The impact of agricultural land afforestation on air temperatures near the surface. Journal of Forest Science, 68: 485-495.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.