J. For. Sci., 2024, 70(9):447-457 | DOI: 10.17221/29/2024-JFS

Using marteloscope in selection forestry – Study case from 'Pokojná hora' (Czech Republic)Original Paper

Jan Kadavý ORCID...1, Jana Kneiflová2, Michal Kneifl ORCID...1, Barbora Uherková ORCID...1
1 Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 University Enterprise Masaryk Forest in Křtiny, Křtiny, Czech Republic

In today's forestry practices, integrated management is the prevailing approach. One method gaining traction is retention forestry, where certain trees, known as biotope trees providing microhabitats (TreMs), are preserved during harvesting operations. This article delves into hands-on training for marking interventions using marteloscope plots, focusing specifically on 'Pokojná hora,' a 1-hectare plot situated in the southeast of the Czech Republic. Field surveys were conducted using FieldMap technology, capturing essential data for all trees: coordinates, species, diameter, height, and health status. Additionally, details such as wood quality, economic value, microhabitats, and habitat value were documented for each tree. Forestry engineering students virtually mapped out interventions on the marteloscope plot, testing 11 solution variants across 2 scenarios to strike a balance between economic goals and biodiversity conservation. The plot hosts 155 microsites, predominantly on Fagus sylvatica (common beech) with 108 microsites. The likelihood of TreMs increases with tree diameter, while the correlation between a tree's economic value and its diameter was confirmed. Optimal management suggests maintaining 10 habitat trees per ha to reconcile economic and ecological objectives during harvesting operations. In essence, we contend that the adoption of retention forestry practices coupled with marteloscope training can play a pivotal role in arresting biodiversity decline within forest ecosystems.

Keywords: continuous cover forestry; ecological value; economic value; optimisation; tree microhabitat; virtual tree selection

Received: April 8, 2024; Revised: May 31, 2024; Accepted: June 6, 2024; Prepublished online: August 28, 2024; Published: September 19, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kadavý J, Kneiflová J, Kneifl M, Uherková B. Using marteloscope in selection forestry – Study case from 'Pokojná hora' (Czech Republic). J. For. Sci. 2024;70(9):447-457. doi: 10.17221/29/2024-JFS.
Download citation

References

  1. Asbeck T., Pyttel P., Frey J., Bauhus J. (2019): Predicting abundance and diversity of tree-related microhabitats in Central European montane forests from common forest attributes. Forest Ecology and Management, 432: 400-408. Go to original source...
  2. Asbeck T., Großmann J., Paillet Y., Winiger N., Bauhus J. (2021): The use of tree-related microhabitats as forest biodiversity indicators and to guide integrated forest management. Current Forestry Reports, 7: 59-68. Go to original source...
  3. Bobiec A. (1998): The mosaic diversity of field layer vegetation in the natural and exploited forests of Białowieża. Plant Ecology, 136: 175-187. Go to original source...
  4. Bohn F.J., Huth A. (2017): The importance of forest structure to biodiversity-productivity relationships. Royal Society Open Science, 4: 160521. Go to original source... Go to PubMed...
  5. Bollmann K., Braunisch V. (2013): To integrate or to segregate: Balancing commodity production and biodiversity conservation in European forests. In: Kraus D., Krumm F. (eds): Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. Freiburg, European Forest Institute: 18-31.
  6. Chytrý M. (2013): Vegetace České republiky. Svazek 4: Lesní a křovinná vegetace. Prague, Academia: 552. (in Czech)
  7. Cosyns H., Kraus D., Krumm F., Schulz T., Pyttel P. (2019): Reconciling the tradeoff between economic and ecological objectives in habitat-tree selection: A comparison between students, foresters, and forestry trainers. Forest Science, 65: 223-234. Go to original source...
  8. Cosyns H., Joa B., Mikoleit R., Krumm F., Schuck A., Winkel G., Schulz T. (2020): Resolving the trade-off between production and biodiversity conservation in integrated forest management: Comparing tree selection practices of foresters and conservationists. Biodiversity and Conservation, 29: 3717-3737. Go to original source...
  9. Courbaud B, Pupin C., Letort A., Cabanettes A., Larrieu L. (2017): Modelling the probability of microhabitat formation on trees using cross-sectional data. Methods in Ecology and Evolution, 8: 1347-1359. Go to original source...
  10. Dănescu A., Kohnle U., Bauhus J., Sohn J., Albrecht A.T. (2018): Stability of tree increment in relation to episodic drought in uneven-structured, mixed stands in southwestern Germany. Forest Ecology and Management, 415-416: 148-159. Go to original source...
  11. Dauber J., Hirsch M., Simmering D., Waldhardt R., Otte A., Wolters V. (2003): Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agriculture, Ecosystems and Environment, 98: 321-329. Go to original source...
  12. Duflot R., Fahrig L., Mönkkönen M. (2022): Management diversity begets biodiversity in production forest landscapes. Biological Conservation, 268: 109514. Go to original source...
  13. EEA (2006): European Forest Types: Categories and Types for Sustainable Forest Management Reporting and Policy. Copenhagen, European Environment Agency: 114.
  14. Großmann J., Carlson L., Kändler G., Pyttel P., Kleinschmit J.R.G., Bauhus J. (2023): Evaluating retention forestry 10 years after its introduction in temperate forests regarding the provision of tree-related microhabitats and dead wood. European Journal of Forest Research, 142: 1125-1147. Go to original source...
  15. Gustafsson L., Bauhus J., Asbeck T., Derci Augustynczik A.L., Basile M., Frey J., Gutzat F., Hanewinkel M., Helbach J., Jonker M., Knuff A., Messier C., Penner J., Pyttel P., Reif A., Storch F., Winiger N., Winkel G., Yousefpour R., Storch I. (2020): Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio, 49: 85-97. Go to original source... Go to PubMed...
  16. Joa B., Paulus A., Mikoleit R., Winkel G. (2020): Decision making in tree selection - Contemplating conflicting goals via marteloscope exercises. Rural Landscapes: Society, Environment, History, 7: 1-14. Go to original source...
  17. Johann F., Schaich H. (2016): Land ownership affects diversity and abundance of tree microhabitats in deciduous temperate forests. Forest Ecology and Management, 380: 70-81. Go to original source...
  18. Kozák D., Svitok M., Zemlerová V., Mikoláš M., Lachat T., Larrieu L., Paillet Y., Buechling A., Bače R., Keeton W.S., Vítková L., Begovič K., Čada V., Dušátko M., Ferenčík M., Frankovič M., Gloor R., Hofmeister J., Janda P., Kameniar O., Kníř T., Majdanová L., Mejstřík M., Pavlin J., Ralhan D., Rodrigo R., Roibu C.C., Synek M., Vostarek O., Svoboda M. (2023): Importance of conserving large and old trees to continuity of tree-related microhabitats. Conservation Biology, 37: 1-12. Go to original source... Go to PubMed...
  19. Kraus D., Krumm F. (2013): Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. Freiburg, European Forest Institute: 284.
  20. Kraus D., Bütler R., Krumm F., Lachat T., Larrieu L., Mergner U., Paillet Y., Rydkvist T., Schuck A., Winter S. (2016): Catalogue of Tree Microhabitats - Reference Field List. Integrate+ Technical Paper. Freiburg, European Forest Institute: 16.
  21. Kraus D., Schuck A., Krumm F., Bütler R., Cosyns H., Courbaud B., Larrieu L., Mergner U., Pyttel P., Varis S., Wilhelm G.J., Witz M., Zenner E., Zudin S. (2018): Seeing is Building Better Understanding - The Integrate+ Marteloscopes. Integrate+ Technical Paper. Freiburg, European Forest Institute: 22.
  22. Larrieu L., Paillet Y., Winter S., Bütler R., Kraus D., Krumm F., Lachat T., Michel A.K., Regnery B., Vandekerkhove K. (2018): Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecological Indicators, 84: 194-207. Go to original source...
  23. Mason W.L., Diaci J., Carvalho J., Valkonen S. (2022): Continuous cover forestry in Europe: Usage and the knowledge gaps and challenges to wider adoption. Forestry: An International Journal of Forest Research, 95: 1-12. Go to original source...
  24. Mölder A., Tiebel M., Plieninger T. (2021): On the interplay of ownership patterns, biodiversity, and conservation in past and present temperate forest landscapes of Europe and North America. Current Forestry Reports, 7: 195-213. Go to original source...
  25. Muys B., Angelstam P., Bauhus J., Bouriaud L., Jactel H., Kraigher H., Müller J., Pettorelli N., Pötzelsberger E., Primmer E., Svoboda M., Jellesmark Thorsen B., Van Meerbeek K. (2022): Forest Biodiversity in Europe: From Science to Policy 13. Joensuu, European Forest Institute: 80. Go to original source...
  26. Niedermann-Meier S., Mordini M., Bütler R., Rotach P. (2010): Habitatbäume im Wirtschaftswald: Ökologisches Potenzial und finanzielle Folgen für den Betrieb. Schweizerische Zeitschrift für Forstwesen, 161: 391-400. (in German) Go to original source...
  27. Paillet Y., Archaux F., Boulanger V., Debaive N., Fuhr M., Gilg O., Gosselin F., Guilbert E. (2017): Snags and large trees drive higher tree microhabitat densities in strict forest reserves. Forest Ecology and Management, 389: 176-186. Go to original source...
  28. Paillet Y., Debaive N., Archaux F., Cateau E., Gilg O., Guilbert E. (2019): Nothing else matters? Tree diameter and living status have more effects than biogeoclimatic context on microhabitat number and occurrence: An analysis in French forest reserves. PLoS One, 14: 1-18. Go to original source... Go to PubMed...
  29. Pommerening A., Vítková L., Zhao X., Ramos C.P. (2015): Human tree selection behaviour. Forest Facts, 9: 6.
  30. Pommerening A., Pallarés Ramos C., Kędziora W., Haufe J., Stoyan D. (2018): Rating experiments in forestry: How much agreement is there in tree marking? PLoS One, 13: e0194747. Go to original source... Go to PubMed...
  31. Pötzelsberger E., Schuck A., den Herder M. (2021): How Does Forest Management Affect Biodiversity? Joensuu, European Forest Institute. Available at: https://efi.int/forestquestions/q6
  32. R Core Team (2021): R: A Language and Environment for Statistical Computing (Version 4.1) [Computer software]. Vienna, R Foundation for Statistical Computing. Available at: http://www.R-project.org
  33. Santopuoli G., di Cristofaro M., Kraus D., Schuck A., Lasserre B., Marchetti M. (2019): Biodiversity conservation and wood production in a Natura 2000 Mediterranean forest. A trade-offevaluation focused on the occurrence of microhabitats. iForest, 12: 76-84. Go to original source...
  34. Spinelli R., Magagnotti N., Pari L., Soucy M. (2016): Comparing tree selection as performed by different professional figures. Forest Science, 62: 213-219. Go to original source...
  35. The jamovi project (2022): jamovi (Version 2.3) [Computer software]. Available at: https://www.jamovi.org/
  36. Vandekerkhove K., Thomaes A., Jonsson B.G. (2013): Connectivity and fragmentation: Island biogeography and metapopulation applied to old-growth-elements. In: Kraus D., Krumm F. (eds): Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. Freiburg, European Forest Institute: 104-115.
  37. Vítková L., Ní Dhubháin Á., Pommerening A. (2016): Agreement in tree marking: What is the uncertainty of human tree selection in selective forest management? Forest Science, 62: 288-296. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.