J. For. Sci., 2024, 70(8):420-435 | DOI: 10.17221/14/2024-JFS
Candidate natural enemy assemblage for the biological control of Lymantria dispar L. in oak (Quercus spp.) with different levels of pest infestationOriginal Paper
- Department of Agroforestry Science, Higher Technical School of Engineering (ETSI), University of Huelva, Huelva, Spain
Mediterranean Quercus forests have great ecological importance but face numerous threats, including pests. The spongy moth, Lymantria dispar L., is a major oak defoliator across its geographical range and has a natural enemy complex that may control its population dynamics. This study aimed to investigate candidate predators (Coleoptera: Carabidae) and parasitoids (Hymenoptera: Encyrtidae, Ichneumonidae, Pteromalidae, Braconidae, Bethylidae, Ceraphronidae, Eulophidae, Eupelmidae and Trichogrammatidae; and Diptera: Tachinidae), for the control of L. dispar in two areas in Andalusia (Spain). We studied 10 Quercus stands (Q. suber, Q. ilex, and Q. pyrenaica), with different L. dispar infestation level. Insects were collected using pitfall and cross-vane traps, during the defoliator's larval period. Four genera comprised 92.2% of all the Carabidae predators found: Steropus Dejean (34.1%), Carabus L. (28.4%), Calathus Bonelli (15.9%), and Platyderus Stephens (13.8%); and four Hymenoptera families comprised 93.7% of the parasitoid specimens collected: Encyrtidae (61%), Ichneumonidae (17.5%), Pteromalidae (10.7%), and Braconidae (4.5%). Both the natural enemy assemblage composition and the abundance per tree varied between geographical areas, as well as between levels of defoliator infestation. The candidate enemy complex was markedly diverse and abundant in stands not infested by L. dispar, where no insecticides had been applied. Our results suggest the importance of generalist predators as natural enemies of L. dispar.
Keywords: biocontrol; parasitoids; predators; Quercus pyrenaica; Quercus suber; spongy moth
Received: February 15, 2024; Revised: May 2, 2024; Accepted: May 21, 2024; Prepublished online: August 21, 2024; Published: August 23, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdel-Raheem M. (2021): Effect of insecticides on natural-enemies. In: Rebolledo R.E. (ed.): Insecticides - Impact and Benefits of Its Use for Humanity. London, IntechOpen Limited: 2-3.
Go to original source...
- Alalouni U., Schädler M., Brandl R. (2013): Natural enemies and environmental factors affecting the population dynamics of the gypsy moth. Journal of Applied Entomology, 137: 721-738.
Go to original source...
- Boukouvala M.C., Kavallieratos N.G., Skourti A., Pons X., Alonso C.L., Eizaguirre M., Fernandez E.B., Solera E.D., Fita S., Bohinc T., Trdan S., Agrafioti P., Athanassiou C.G. (2022): Lymantria dispar (L.) (Lepidoptera: Erebidae): Current status of biology, ecology, and management in Europe with notes from North America. Insects, 13: 854.
Go to original source...
- Buckner C.H., Kingsbury P.D., McLeod B.B., Mortensen K.L., Ray D.G.H. (1974): Impact of aerial treatment on non-target organisms. In: Evaluation of Commercial Preparations of Bacillus thuringiensis With and Without Chitinase Against Spruce Budworm. Information Report CC-X-97. Ottawa, Chemical Control Research Institute: 1-72.
- Cameron E.A., Reeves R.M. (1990): Carabidae (Coleoptera) associated with gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations subjected to Bacillus thuringiensis Berliner treatments in Pennsylvania. The Canadian Entomologist, 122: 123-129.
Go to original source...
- Castro A.A., Lacerda M.C., Zanuncio T.V., de S. Ramalho F., Polanczyk R.A., Serrão J.E., Zanuncio J.C. (2012): Effect of the insect growth regulator diflubenzuron on the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology, 21: 96-103.
Go to original source...
- CMA (2016): Plan de Lucha Integrada contra Lymantria dispar. Sevilla, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía: 46. (in Spanish)
- Gearty W., Jones L.A. (2023): Rphylopic: An R package for fetching, transforming, and visualising PhyloPic silhouettes. Methods in Ecology and Evolution, 14: 2700-2708.
Go to original source...
- Gentilesca T., Camarero J.J., Colangelo M., Nolè A., Ripullone F. (2017): Drought-induced oak decline in the western Mediterranean region: An overview on current evidences, mechanisms and management options to improve forest resilience. iForest, 10: 796-806.
Go to original source...
- Golemansky V., Pilarska D., Georgiev G., Takov D., Todorov M., Pilarski P. (2010): Protozoan parasites and pathogens of forest pest arthropods. Silva Balcanica, 11: 67-72.
- Gonçalves F., Carlos C., Crespo L., Zina V., Oliveira A., Salvaçao J., Pereira J.A., Torres L. (2021): Soil arthropods in the Douro demarcated region vineyards: General characteristics and ecosystem services provided. Sustainability, 13: 7837.
Go to original source...
- Guillemain M., Loreau M., Daufresne T. (1997): Relationships beetween the regional distribution of carabid beetles (Coleoptera, Carabidae) and the abundance of their potential prey. Acta Oecologica, 18: 465-483.
Go to original source...
- Hajek A.E., Diss-Torrance A.L., Siegert N.W., Liebhold A.M. (2021): Inoculative releases and natural spread of the fungal pathogen Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) into U.S. populations of gypsy moth, Lymantria dispar (Lepidoptera: Erebidae). Environmental Entomology, 50: 1007-1015.
Go to original source...
- Hamidi B., Wallace K., Vasu C., Alekseyenko A.V. (2019): Wd*-test: Robust distance-based multivariate analysis of variance. Microbiome, 7: 51.
Go to original source...
- Hartig F. (2022): DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R Package Version 0.4.6. Available at: https://CRAN.R-project.org/package=DHARMa
- Hoch G., Kalbacher G., Schopf A. (2006): Gypsy moth revisited: Studies on the natural enemy complex of Lymantria dispar L. (Lep., Lymantriidae) during an outbreak in a well known gypsy moth area. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 15: 201-204.
- Holu¹a J., Zúbrik M., Resnerová K., Vanická H., Li¹ka J., Mertelík J., Takov D., Trombik J., Hajek A.E., Pilarska D. (2021): Further spread of the gypsy moth fungal pathogen, Entomophaga maimaiga, to the west and north in Central Europe. Journal of Plant Diseases and Protection, 128: 323-331.
Go to original source...
- Legendre P., Borcard D. (2018): Box-Cox-chord transformations for community composition data prior to beta diversity analysis. Ecography, 41: 1820-1824.
Go to original source...
- Leroy B.M.L., Lemme H., Braumiller P., Hilmers T., Jacobs M., Hochrein S., Kienlein S., Müller J., Pretzsch H., Stimm K., Seibold S., Jaworek J., Hahn W.A., Müller-Kroehling S., Weisser W.W. (2021): Relative impacts of gypsy moth outbreaks and insecticide treatments on forest resources and ecosystems: An experimental approach. Ecological Solutions and Evidence, 2: e12045.
Go to original source...
- Lövei G.L., Sunderland K.D. (1996): Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41: 231-256.
Go to original source...
- MacLean D.B., Usis J.D. (1992): Ground beetles (Coleoptera: Carabidae) of Eastern Ohio forests threatened by the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Ohio Journal of Sciences, 92: 46-50.
- Madrid F.J., Stewart R.K. (1981): Impact of diflubenzuron spray on gypsy moth parasitoids in the field. Journal of Economic Entomology, 74: 1-2.
Go to original source...
- Makwela M.M., Slotow R., Munyai T.C. (2023): Carabid beetles (Coleoptera) as indicators of sustainability in agroecosystems: A systematic review. Sustainability, 15: 3936.
Go to original source...
- McManus M., Schneeberger N., Reardon R., Mason G. (1989): Gypsy Moth. Forest Insect & Disease Leaflet 162. Washington, D.C., U.S. Department of Agriculture Forest Service: 14.
- Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Solymos P., Stevens M.H.H., Szoecs E., Wagner H., Barbour M., Bedward M., Bolker B., Borcard D., Carvalho G. et al. (2015): Vegan: Community Ecology Package. R Package Version 2.2-1. Available at: http://CRAN.R-project.org/package=vegan
- Ortuño V.M, Arribas Ó, Andrés E. (2023): The Carabidae (Insecta: Coleoptera) of the upper Salientes Valley (León, northern Spain): Fauna, chorology, and taxonomic notes. Graellsia, 79: e189.
Go to original source...
- Pekár S., Michalko R., Loverre P., Líznarová E., Èernecká L. (2015): Biological control in winter: Novel evidence for the importance of generalist predators. Journal of Applied Ecology, 52: 270-279.
Go to original source...
- Petrovskii S.V., McKay K.A. (2010): Biological invasion and biological control: A case study of the gypsy moth spread. Aspects of Applied Biology, 104: 37-48.
- Roswell M., Dushoff J. (2020): MeanRarity: Hill Diversity Estimation and Visualisation. CRAN. Available at: https://github.com/mikeroswell/MeanRarity/
- Roswell M., Dushoff J., Winfree R. (2021): A conceptual guide to measuring species diversity. Oikos, 130: 321-338.
Go to original source...
- Salim M., Gökçe A., Naqqash M.N., Bakhsh A. (2016): An overview of biological control of economically important lepidopteron pests with parasitoids. Journal of Entomology and Zoology Studies, 4: 354-362.
- Sallé A., Nageleisen L.M., Lieutier F. (2014): Bark and wood boring insects involved in oak declines in Europe: Current knowledge and future prospects in a context of climate change. Forest Ecology and Management, 328: 79-93.
Go to original source...
- ©eriæ Jelaska L., Franjeviæ D., Jelaska S.D., Symondson W.O.C. (2014): Prey detection in carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. European Journal of Entomology, 111: 631-638.
Go to original source...
- Tabakoviæ-To¹iæ M. (2012): Gypsy moth, Lymantria dispar (L.), and its natural enemies in the forests of Central Serbia. Sustainable Forestry Collection, 65/66: 133-147.
Go to original source...
- Thomas F. (2008): Recent advances in cause-effect research on oak decline in Europe. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3: 1-12.
Go to original source...
- Tiberi R., Branco M., Bracalini M., Croci F., Panzavolta T. (2016): Cork oak pests: A review of insect damage and management. Annals of Forest Science, 73: 219-232.
Go to original source...
- US-APHIS (2019): Final Human Health and Ecological Risk Assessment for Diflubenzuron Rangeland Grasshopper and Mormon Cricket Suppression Applications. Riverdale, United States Department of Agriculture, Animal and Plant Health Inspection Service: 53.
- Vanbergen A.J, Woodcock B.A., Koivula M., Niemela J., Kotze D.J., Bolger T., Golden V., Dubs F., Boulanger G., Serrano J., Lencina J.L., Serrano A., Aguiar C., Grandchamp A.C., Stofer S., Szel G., Ivits E., Adler P., Markus J., Watt A.D. (2010): Trophic level modulates carabid beetle responses to habitat and landscape structure: A pan-European study. Ecological Entomology, 35: 226-235.
Go to original source...
- Venables W.N., Ripley B.D. (2002): Modern Applied Statistics with S. 4th Ed. New York, Springer: 497.
Go to original source...
- Vericat P., Piqué M., Serrada R. (2012): Gestión adaptativa al cambio global en masas de Quercus mediterráneos. Solsona, Centre Tecnològic Forestal de Catalunya: 172. (in Spanish)
- Zankl T., Schafellner C., Hoch G. (2023): Parasitoids and pathogens in a collapsing Lymantria dispar (Lepidoptera: Erebidae) population in Lower Austria. Journal of Applied Entomology, 147: 676-687.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.