J. For. Sci., 2024, 70(6):299-316 | DOI: 10.17221/10/2024-JFS

Evaluation of the effect of different thinning types on dendrometric parameters and subsequent spontaneous growth in a beech-oak-linden standOriginal Paper

Kateřina Novosadová ORCID..., Jiří Kadlec ORCID..., Petr Sýkora ORCID..., Martin Kománek ORCID..., Radek Pokorný ORCID...
Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

Due to an increasing risk of further damage to forests, forest managers are considering introducing an alternative direction for their future development – via the cultivation of mixed forests. At middle altitudes in the Czech Republic, an oak-beech-linden stand is the most natural type, and we tried to answer three main questions: (i) How the various thinning types affect dendrometric parameters and quality of the stand; (ii) How long thinning works on this stand until it loses its effect; (iii) How the stand develops spontaneously after abandonment. This experiment was conducted at the Training Forest Enterprise in the Czech Republic in Drahanská vrchovina (highlands in central Moravia). In 1988, four plots were established in a 49-year-old stand where, in three of the plots, different types of thinning (crown, low and heavy crown) were performed, leaving one (reference plot) to develop naturally. The height, the height of the crown base and diameter at breast height (DBH) were measured, and the shape and quality of the trunk and crown were estimated on each tree. Measurements were carried out in 1989, 1994, 1999, 2005, 2010, 2015, and 2020. In the first 10 years, the DBH and height of the crown base did not show any differences, and the linden at the heavy crown plot outgrew the linden trees at the other plots in height. After these 10 years, the thickest linden, the tallest beech and linden, and the greatest height of the crown base of beech and linden were all found at the heavy crown plot. The shape and quality of the trunks and crowns of beech, oak and linden were similar in all plots (including the reference plot) during the entire experiment. After thinning, the plots were left to grow spontaneously. The heavy crown thinning removed a greater number of thicker trees at the middle level, thus supporting the trees growing in the lower part of the middle level and in the below level (i.e. the beech and linden). These trees then grew more quickly compared to the others, but their quality decreased, as did that of the others. Therefore, a forest left to grow and develop spontaneously is practically unusable for commercial purposes.

Keywords: abandonment forest; diameter at breast height; Fagus sylvatica; height; mixed forest; quality of stem and crown; Quercus petraea; Tilia cordata

Received: January 29, 2024; Revised: April 9, 2024; Accepted: April 15, 2024; Prepublished online: May 30, 2024; Published: June 25, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Novosadová K, Kadlec J, Sýkora P, Kománek M, Pokorný R. Evaluation of the effect of different thinning types on dendrometric parameters and subsequent spontaneous growth in a beech-oak-linden stand. J. For. Sci. 2024;70(6):299-316. doi: 10.17221/10/2024-JFS.
Download citation

References

  1. Ammer C. (2008): Konkurrenzsteuerung - Anmerkungen zu einer Kernaufgabe des Waldbaus beim Aufbau vielfältiger Wälder. Eberswalder Forstliche Schriftenreihe, 36: 21-26. (in German)
  2. Assmann E. (1961): Waldertragskunde. Munchen, BLV Verlagsgesellschaft: 490. (in German)
  3. Badraghi A., Krůček M., Král K., Reitschmiedova E., Šálek V., Kotápišová M., Novotná B., Frouz J. (2023): Woody species succession and spontaneous forest development in post-mining sites after coal mining in the Czech Republic. Ecological Engineering, 194: 107051. Go to original source...
  4. Baterlink H.H. (1997): Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales des sciences forestières, 54: 39-50. Go to original source...
  5. Bauhus J., Forrester D.I., Gardiner B., Jactel H., Vallejo R., Pretzsch H. (2017): Ecological stability of mixed-species forests. In: Pretzsch H., Forrester D.I., Bauhus J. (eds): Mixed-species Forests. Ecology and Management. Berlin, Springer: 337-382. Go to original source...
  6. Boncina A., Kadunc A., Robic D. (2007): Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-eastern Slovenia. Annals of Forest Science, 64: 47-57. Go to original source...
  7. Bravo-Oviedo A., Pretzsch H., del Río M. (2018): Dynamics, Silviculture and Management of Mixed Forests. Managing Forest Ecosystems. Vol. 31. Berlin, Springer: 430. Go to original source...
  8. Brooker R.W., Maestre F.T., Callaway R.M., Lortie C.L., Cavieres L.A., Kunstler G., Liancourt P., Tielbörger K., Travis J.M.J., Anthelme F., Armas C., Coll L., Corcket E., Delzon S., Forey E., Kikvidze Z., Olofsson J., Pugnaire F., Quiroz C.L., Saccone P., Schiffers K., Seifan M., Touzard B., Michalet R. (2008): Facilitation in plant communities: The past, the present, and the future. Journal of Ecology, 96: 18-34. Go to original source...
  9. Bürgi M., Russell E.W.B. (2001): Integrative methods to study landscape changes. Land Use Policy, 18: 9-16. Go to original source...
  10. Burrascano S., Keeton W.S., Sabatini F.M., Blasi C. (2013): Commonality and variability in the structural attributes of moist temperate old-growth forests: A global review. Forest Ecology and Management, 291: 458-479. Go to original source...
  11. Buzikhin A.I., Pschenichnikova L.S. (1980): Formirovaniye sosnovo-listvennykh molodnyakov. Novosibirsk, Nauka: 175. (in Russian)
  12. Cameron A.D., Dunham R.A., Petty J.A. (1995): The effects of heavy thinning on stem quality and timber properties of silver birch (Betula pendula Roth). Forestry, 68: 275-286. Go to original source...
  13. Cancino J., Gadow K.V. (2002): Stem number guide curves for uneven-aged forests, development and limitations. In: Gadow K.V., Nagel J., Saborowski J. (eds): Continuous Cover Forestry. Dordrecht, Kluwer Academic Publishers: 163-174. Go to original source...
  14. Cañellas I., Montero G., Bachiller A. (1998): Transformation of quejigo oak (Quercus faginea Lam.) coppice forest into high forest by thinning. Annali dell'Istituto Sperimentale per la Selvicoltura, 27: 143-147.
  15. Cañellas I., Del Río M., Roig S., Montero G. (2004): Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Annals of Forest Science, 61: 243-250. Go to original source...
  16. CHMI (2023): Měsíční a roční data dle zákona 123/1998 Sb. Prague, Czech Hydrometeorological Institute. Available at: https://www.chmi.cz/historicka-data/pocasi/uzemni-teploty# (in Czech)
  17. Ciancio O., Corona P., Lamonaca A., Portoghesi L., Travaglini D. (2006): Conversion of clearcut beech coppices into high forests with continuous cover: A case study in central Italy. Forest Ecology and Management, 224: 235-240. Go to original source...
  18. Collet C., Lanter O., Pardos M. (2001): Effects of canopy opening on height and diameter growth in naturally regenerated beech seedlings. Annals of Forest Science, 58: 127-134. Go to original source...
  19. Daume S., Robertson D. (2000): A heuristic approach to modelling thinning. Silva Fennica, 34: 237-249. Go to original source...
  20. DeLiocourt F. (1898): De l'aménagement des Sapiniéres. Bulletin de la Société Forestière de Franche-Comté et Belfort, 4: 396-409. (in French)
  21. Ducey M.J., Woodall C.W., Bravo-Oviedo A. (2017): Climate and species functional traits influence maximum live tree stocking in the Lake States, USA. Forest Ecology and Management, 386: 51-61. Go to original source...
  22. Eule H.W. (1959): Verfahren zur Baumkronenmessung und Beziehungen zwischen Kronengrösse, Stammstärke und Zuwachs bei Rotbuche, dargestellt an einer nordwestdeutschen Durchforstungsreihe. Allgemeine Forst- und Jagdzeitung, 130: 185-201. (in German)
  23. Felton A., Nilsson U., Sonesson J., Felton A.M., Roberge J.M., Ranius T., Ahlström M., Bergh J., Björkman C., Boberg J., Drössler L., Fahlvik N., Gong P., Holmström E., Keskitalo E.C.H., Klapwijk M.J., Laudon H., Lundmark T., Niklasson M., Nordin A., Pettersson M., Stenlid J., Sténs A., Wallerty K. (2016): Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio, 45: 124-139. Go to original source... Go to PubMed...
  24. Forrester D.I. (2014): The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management, 312: 282-292. Go to original source...
  25. Gamfeldt L., Snäll T., Bagchi R., Jonsson M., Gustafsson L., Kjellander P., Ruiz-Jaen M.C., Fröberg M., Stendahl J., Philipson C.D., Mikusiński G., Andersson E., Westerlund B., Andrén H., Moberg F., Moen J., Bengtsson J. (2013): Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4: 1340. Go to original source... Go to PubMed...
  26. Georgievsky N.P. (1957): Goslesbumizda. Moscow-Leningrad, Goslesbumizdat: 119. (in Russian)
  27. Gömöry D., Paule L. (2011): Trade-off between height growth and spring flushing in common beech (Fagus sylvatica L.). Annals of Forest Science, 68: 975-984. Go to original source...
  28. Gondard H., Romane F., Grandjanny M., Li J., Aronson J. (2001): Plant species diversity changes in abandonment chestnut (Castanea sativa) groves in southern France. Biodiversity and Conservation, 10: 189-207. Go to original source...
  29. Guericke M. (2002): Untersuchungen zur Wuchsdynamik der Buche. Forst und Holz, 57: 331-337. (in German)
  30. Heinrichs S., Ammer C., Mund M., Boch S., Budde S., Fischer M., Müller J., Schöning I., Schulye E.-D., Schmidt W., Weckesser M., Schall P. (2019): Landscape-scale mixtures of tree species are more effective than stand-scale mixtures for biodiversity of vascular plants, bryophytes and lichens. Forests, 10: 73. Go to original source...
  31. Hibbs D.E., Emmingham W.H., Bondi M.C. (1989): Thinning red alder: Effects of method and spacing. Forest Science, 35: 16-29. Go to original source...
  32. Hooper D.U., Chapin III F.S., Ewel J.J., Hector A., Inchausti P., Lavorel S., Lawton J.H., Lodge D.M., Loreau M., Naeem S., Schmid B., Setälä H., Symstad A.J., Vandermeer J., Wardle D.A. (2005): Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75: 3-35. Go to original source...
  33. Hough A.F. (1932): Some diameter distributions in forest stands of northwestern Pennsylvania. Journal of Forestry, 30: 933-943.
  34. IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO: 192.
  35. Jactel H., Gritti E.S., Drössler L., Forrester D.I., Mason W.L., Morin X., Pretzsch H., Castagneyrol B. (2018): Positive biodiversity-productivity relationships in forests: Climate matters. Biology Letters, 14: 20170747. Go to original source... Go to PubMed...
  36. Juchheim J., Annighöfer P., Ammer C., Calders K., Raumonen P., Seidel D. (2017): How management intensity and neighborhood composition affect the structure of beech (Fagus sylvatica L.) trees. Trees, 31: 1723-1735. Go to original source...
  37. Juodvalkis A., Kairiukstis L., Vasiliauskas R. (2005): Effects of thinning on growth of six tree species in north-temperate forests of Lithuania. European Journal of Forest Research, 124: 187-192. Go to original source...
  38. Kelty M.J. (1992): Comparative productivity of monocultures and mixed-species stands. In: Kelty M.J., Larson B.C., Oliver C.D. (eds): The Ecology and Silviculture of Mixed-species Forests. Dordrecht, Kluwer Academic Publishers: 125-141. Go to original source...
  39. Kennel R. (1966): Soziale Stellung, Nachbarschaft und Zuwachs. Forstwissenschaftliches Centralblatt, 85: 193-204. (in German) Go to original source...
  40. Kerr G., Haufe J. (2011): Thinning Practice: A Silvicultural Guide. Edinburgh, Forestry Commission: 54. Available at: https://cdn.forestresearch.gov.uk/2011/01/silviculture_thinning_guide_v1_jan2011.pdf
  41. Köppen W. (1936): Handbuch der Klimatologie. Das Geographische System der Klimate. Berlin, Verlag von Gebrüder Borntraeger: 44. (in German)
  42. Kučeravá B., Remeš J. (2014): Inventarizace a potenciál využití vtroušených jedinců buku lesního a dubu letního při přeměně druhové skladby smrkových monokultur Národního Parku České Švýcarsko. Zprávy lesnického výzkumu, 59: 109-116. (in Czech)
  43. Leak W.A. (1996): Long-term structural change in uneven-aged northern hardwoods. Forest Science, 42: 160-165. Go to original source...
  44. Liang J., Crowther T.W., Picard N., Wiser S., Zhou M., Alberti G., Schulze E.D., McGuire A.D., Bozzato F., Pretzsch H. et al. (2016): Positive biodiversity-productivity relationship predominant in global forests. Science, 354: 1-12. Go to original source... Go to PubMed...
  45. Lindén M. (2003): Increment and Yield in Mixed stands with Norway spruce in Southern Sweden. Uppsala, Swedish University of Agricultural Sciences: 44.
  46. Medhurst J.L., Beadle C.L., Nielson W.A. (2001): Early-age and later-age thinning affects growth, dominance, and intraspecific competition in Eucalyptus nitens plantations. Canadian Journal of Forest Research, 31: 187-197. Go to original source...
  47. Meinzer F.C., Lachenbruch B., Dawson T.E. (2011): Size and Age-Related Changes in Tree Structure and Function. Dordrecht, Springer: 450. Go to original source...
  48. Metz J., Annighöfer P., Schall P., Zimmermann J., Kahl T., Schulze E.D., Ammer C. (2016): Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biology, 22: 903-920. Go to original source... Go to PubMed...
  49. Meyer H.A. (1952): Structure, growth and drain in balanced uneven-aged forests. Journal of Forestry, 50: 85-92.
  50. Millar C.I., Stephenson N.L., Stephens S.L. (2007): Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17: 2145-2151. Go to original source... Go to PubMed...
  51. Miller G. (1997): Stand dynamics in 60-year-old Allegheny hardwoods after thinning. Canadian Journal of Forest Research, 27: 1645-1657. Go to original source...
  52. Mitscherlich G. (1970): Wald, Wachstum und Umwelt. 1. Band, Form und Wachstum von Baum und Bestand. Frankfurt am Main, JD Sauerländer's Verlag: 144. (in German)
  53. Moller C.M. (1947): The effect of thinning, age, and site on foliage, increment, and loss of dry matter. Journal of Forestry, 45: 393-404.
  54. Nowak C.A. (1996): Wood volume increment in thinned, 50- to 55-year-old, mixed species Allegheny hardwoods. Canadian Journal of Forest Research, 26: 819-835. Go to original source...
  55. Oliver C.D., Larson B.C. (1996): Forest Stand Dynamics. New York, John Wiley and Sons: 520.
  56. Olsthoorn A.F.M., Bartelink H.H., Gardiner J.J., Pretzsch H., Hekhuis H.J., Franc A. (1999): Management of Mixed-Species Forest: Silviculture and Economics. Wageningen, DLO Institute for Forestry and Nature Research: 392.
  57. Piovesan G., Biondi F., Di Filippo A., Alessandrini A., Maugeri M. (2008): Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biology, 14: 1265-1281. Go to original source...
  58. Polanský B. (1955): Pěstění lesů. Praha, SZN: 371. (in Czech)
  59. Pretzsch H. (1992): Modellierung der Kronenkonkurrenz von Fichte und Buche in Rein- und Mischbeständen. Allgemeine Forst-und Jagdzeitung, 163: 203-213. (in German)
  60. Pretzsch H., Rötzer T., Forrester D.I. (2017): Modelling mixed-species forest stands. In: Pretzsch H., Forrester D.I., Bauhus J. (eds): Mixed-Species Forests. Berlin, Springer: 383-432. Go to original source...
  61. Pretzsch H., Posechenrieder W., Uhl E., Brazaitis G., Makrickiene E., Calama R. (2021): Silvicultural prescriptions for mixed-species forest stands. A European review and perspective. European Journal of Forest Research, 140: 1267-1294. Go to original source...
  62. Roloff A. (1985): Morphologie der Kronenentwicklung von Fagus sylvatica L. (Rotbuche) unter besonderer Berücksichtigung möglicherweise neuartiger Veränderungen. Göttingen, University of Göttingen: 177. (in German)
  63. Rytter L., Werner M. (2007): Influence of early thinning in broadleaved stands on development of remaining stems. Scandinavian Journal of Forest Research, 22: 198-210. Go to original source...
  64. Šebková B., Šamonil P., Janík D., Adam D., Král K., Vrška T., Hort L., Unar P. (2011): Spatial and volume patterns of an unmanaged submontane mixed forest in Central Europe: 160 years of spontaneous dynamics. Forest Ecology and Management, 262: 873-885. Go to original source...
  65. Seidl R., Schelhaas M.J., Rammer W., Verkerk P.J. (2014): Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4: 806-810. Go to original source... Go to PubMed...
  66. Slodičák M., Novák J. (2007): Výchova lesních porostů hlavních hospodářských dřevin. Jíloviště-Strnady, VÚHLM: 46. (in Czech)
  67. Štefančík I., Štefančík L. (2001): Assessment of tending effect on stand structure and stability in mixed stands of spruce, fir and beech on research plot Hrable. Journal of Forest Science, 47: 1-14.
  68. Sternberg G. (2013): Pruning oaks: Training the young to achieve grandeur. In: Chassé B. (ed.): International Oaks. The Journal of the International Oak Society. Proceedings - 7th International Oak Society Conference, Bordeaux, Sept 29 - Oct 2, 2012: 151-160.
  69. Šušić N., Bobinac M., Adrašev S. (2022): Effects of two different thinning methods on the diameter and basal area increments of silver lime (Tilia tomentosa Moench) target trees in Fruška Gora (Serbia). Annals of Forest Research, 65: 3-14. Go to original source...
  70. Tesař V. (1996): Pěstování lesa v heslech. Brno, Mendelova zemědělská a lesnická univerzita v Brně: 95. (in Czech)
  71. Tullus H. (2002): The influence of intermediate cuttings on the growth of pine and spruce forests: Silvicultural recommendations. Metsanduslikud Uurimused, 36: 126-135.
  72. Usta A., Yilmaz M., Yilmas S., Kocamanğolu Y.O., Genç E., Turna I. (2019): The effects of thinning intensity on the growth of Oriental beech (Fagus orientalis Lipsky) plantations in Trabzon, NE Turkey. Šumarski list, 5-6: 231-240. Go to original source...
  73. Vacek S., Černý T., Vacek Z., Podrázský V., Mikeska M., Králíček I. (2017): Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management, 398: 75-90. Go to original source...
  74. Vandekerkhove K., De Keersmaeker L., Baeté H., Walleyn R. (2005): Spontaneous re-establishment of natural structure and related biodiversity in a previously managed beech forest in Belgium after 20 years of non-intervention. Forest Snow and Landscape Research, 79: 145-156.
  75. Vygodskaya N.N., Schulze E.D., Tchebakova N.M., Karpachevskii L.O., Kozlov D., Sidorov K.N., Panfyorov M.I., Abrazko M.A., Shaposhnikov E.S., Solnzeva O.N., Minaeva T.Y., Jeltuchin A.S., Wirth C., Pugachevskii A.V. (2002): Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia. Tellus B: Chemical and Physical Meteorology, 54: 443-461. Go to original source...
  76. Vyskot M. (1962): Probírky. Praha, SZN: 300. (in Czech)
  77. Vyskot M. (1978): Pěstění lesů. Praha, SZN: 432. (in Czech)
  78. Westoby M. (1984): The self-thinning rule. Advances in Ecological Research, 14: 167-225. Go to original source...
  79. Zar J.H. (2010): Biostatistical Analysis. Upper Saddle River, Pearson Education: 960.
  80. Zeide B. (2004): Optimal stand density: A solution. Canadian Journal of Forest Research, 34: 846-854. Go to original source...
  81. Ziaco E., Di Filippo A., Alessandrini A., D'Andrea E., Piovesan G. (2012): Old-growth attributes in a network of Apennines (Italy) beech forests: Disentangling the role past human interferences and biogeoclimate. Plant Biosystems, 146: 153-166. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.