J. For. Sci., 2024, 70(1):31-39 | DOI: 10.17221/30/2023-JFS

Characteristics of powdery mildew [Sawadaea bicornis (Wallr.) Miyabe] influence on the photosynthetic process in Norway maple (Acer platanoides L.) seedlingsShort Communication

Anna Alexeyeva ORCID...1, Kyrylo Holoborodko ORCID...2, Iryna Ivanko ORCID...3, Olexandr Zhukov ORCID...4, Iryna Loza ORCID...5
1 Department of Plant Physiology and Introduction, Faculty of Biology and Ecology, Oles Honchar Dnipro National University, Dnipro, Ukraine
2 Research Laboratory of Terrestrial Ecology, Forest Soil Science and Land Reclamation, Research Institute of Biology, Oles Honchar Dnipro National University, Dnipro, Ukraine
3 Research Institute of Biology, Oles Honchar Dnipro National University, Dnipro, Ukraine
4 Department of Botany and Horticulture, Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
5 Research Laboratory of Biomonitoring, Research Institute of Biology, Oles Honchar Dnipro National University, Dnipro, Ukraine

The article presents the results of research on the impact of Sawadaea bicornis (Wallr.) Miyabe on the state of photosynthetic apparatus in Acer platanoides L. seedlings using a technique of chlorophyll fluorescence induction (ChlF) measurement, which at the present time can be implemented through the use of biosensors. The research was conducted in September 2022 in the territory of the Botanical Garden of Oles Honchar Dnipro National University. To diagnose a violation of the native chlorophyll photosynthesis in fresh leaves of A. platanoides, a portable fluorometer 'Floratest' was used (the selected spectral range for fluorescence intensity measurement was 670–800 nm). The research was carried out on fresh leaves of Norway maple seedlings both not unaffected and affected with powdery mildew. Analysis of the data obtained indicates a high sensitivity of the parameters of chlorophyll fluorescence induction to damage by the disease regardless of environmental conditions of local growth of A. platanoides seedlings. The high informativeness of induction changes in chlorophyll fluorescence in the structural organisation of chloroplasts in Norway maple leaves determined by the parameters Fo, Fm, Fv, Fv/, Fv/Fm, (FmFst)/Fst, (Fp)/Fv was revealed. This study demonstrated the effectiveness of using the studied chlorophyll fluorescence parameters to detect severe stress in Norway maple seedlings caused by powdery mildew exposure when the fungus affects more than 50% of the leaf blade area. It is further necessary to conduct dynamic studies throughout the growing season to determine the effectiveness of using these parameters to detect mild stress in the early stages of infection.

Keywords: biosensors; intensity of chlorophyll fluorescence induction; phytophagous insects; plant photosynthetic apparatus; woody plant species

Received: March 22, 2023; Revised: November 2, 2023; Accepted: November 20, 2023; Published: January 30, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Alexeyeva A, Holoborodko K, Ivanko I, Zhukov O, Loza I. Characteristics of powdery mildew [Sawadaea bicornis (Wallr.) Miyabe] influence on the photosynthetic process in Norway maple (Acer platanoides L.) seedlings. J. For. Sci. 2024;70(1):31-39. doi: 10.17221/30/2023-JFS.
Download citation

References

  1. Baghbani F., Lotfi R., Moharramnejad S., Bandehagh А., Roostaei М., Rastogi А., Kalaji М.Н. (2019): Impact of Fusarium verticillioides on chlorophyll fluorescence parameters of two maize lines. European Journal of Plant Pathology, 154: 1-10. Go to original source...
  2. Bojović M., Nikolić N., Borišev M., Pajević S., Horák R., Pavlović L., Vaštag E. (2017): Uticaj suše i oporavka na parametre razmene gasova kod populacija hrasta lužnjaka gajenih u polukontrolisanim uslovima. Topola, 199/200: 193-207. Available at: http://journalpoplar.ilfe.org/sites/default/files/15_Bojovic_et_al_2017.pdf (in Bosnian).
  3. Chen Х., Mo X., Hu S., Liu S. (2019): Relationship between fluorescence yield and photochemical yield under water stress and intermediate light conditions. Journal of Experimental Botany, 70: 301-313. Go to original source... Go to PubMed...
  4. Desprez-Loustau M., Hamelin F.M., Marçais B. (2019). The ecological and evolutionary trajectory of oak powdery mildew in Europe. In: Wilson K., Fenton A., Tompkins D. (еds): Wildlife Disease Ecology: Linking Theory to Data and Application (Ecological Reviews). Cambridge, Cambridge University Press: 429-457. Go to original source...
  5. Holoborodko K., Seliutina O., Alexeyeva A., Brygadyrenko V., Ivanko I., Shulman M., Pakhomov O., Loza I., Sytnyk S., Lovynska V., Grytsan Y., Bandura L. (2022a): The impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the state of Aesculus hippocastanum photosynthetic apparatus in the urban environment. International Journal of Plant Biology, 13: 223-234. Go to original source...
  6. Holoborodko K.K., Sytnyk S.A., Lovynska V.M., Ivanko I.A., Loza I.M., Brygadyrenko V.V. (2022b): Impact of invasive species Parectopa robiniella (Gracillariidae) on fluorescence parameters of Robinia pseudoacacia in the conditions of the steppe zone of Ukraine. Regulatory Mechanisms in Biosystems, 13: 324-330. Go to original source...
  7. Kautsky H., Hirsch A. (1931): Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften, 19: 964. (in German) Go to original source...
  8. Korányi D., Markó V. (2022): Host plant identity and condition shape phytophagous insect communities on urban maple (Acer spp.) trees. Arthropod-Plant Interactions, 16: 129-143. Go to original source...
  9. Kunakh O.M., Ivanko I.A., Holoborodko K.K., Lisovets O.I., Volkova A.M., Zhukov O.V. (2022): Urban park layers: Spatial variation in plant community structure. Biosystems Diversity, 30: 274-288. Go to original source...
  10. Kuzmin Р., Bukharina І., Kuzmina А. (2020): Biochemical characteristics of urban maple trees. Saudi Journal of Biological Sciences, 27: 2912-2916. Go to original source... Go to PubMed...
  11. Kvitko M.O., Savosko V.M., Lykholat Y.V., Holubiev M.I., Hrygoruk I.P., Lykholat O.A., Kofan I.M., Chuvasova N.O., Yevtushenko E.O., Lykholat T.Y., Marenkov O.M., Ovchinnikova Y.Y. (2022): Assessment of the ecological hybrid threat to industrial area in connection with the vital state of artificial woody plantations in Kryvyi Rih District (Ukraine). IOP Conference Series: Earth and Environmental Science, 1049: 012046. Go to original source...
  12. Liang G., Liu J., Zhang J., Guo J. (2020): Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science, 145: 12-17. Go to original source...
  13. Lovynska V.М., Sytnyk S.А., Holoborodko K.K., Ivanko I.А., Buchavyi Y.V., Alekseeva A.A. (2022): Study on accumulation of heavy metals by green plantations in the conditions of industrial cities. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6: 117-122. Go to original source...
  14. Lu Y., Yao J. (2018): Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. International Journal of Molecular Sciences, 19: 3900. Go to original source... Go to PubMed...
  15. Lu L., Tibpromma S., Karunarathna S.C., Jayawardena R.S., Lumyong S., Xu J., Hyde K.D. (2022): Comprehensive review of fungi on coffee. Pathogens, 11: 411. Go to original source... Go to PubMed...
  16. Matlok N., Szostek M., Antos P., Gajdek G., Gorzelany J., Bobrecka-Jamro D., Balawejder M. (2020): Effect of foliar and soil fertilization with new products based on calcinated bones on selected physiological parameters of maize plants. Applied Sciences, 10: 2579. Go to original source...
  17. Romanov V.O., Braiko Y.O., Imamutdinova R.G., Fedak V.S., Sarakhan E.V. (eds) (2013): Portable Fluorometer 'Floratest' - Operating Instructions. Kyiv, V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine: 1-27. (in Ukrainian)
  18. Sancho-Knapik D., Mendoza-Herrer Ó., Gil-Pelegrín E., Peguero-Pina J.J. (2018): Chl fluorescence parameters and leaf reflectance indices allow monitoring changes in the physiological status of Quercus ilex L. under progressive water deficit. Forests, 9: 400. Go to original source...
  19. Shin Y.K., Bhandari S.R., Lee J.G. (2021): Monitoring of salinity, temperature, and drought stress in grafted watermelon seedlings using chlorophyll fluorescence. Frontiers in Plant Science, 12: 786309. Go to original source... Go to PubMed...
  20. Shupranova L., Holoborodko K., Loza I., Zhukov O., Pakhomov O. (2022): Assessment of Parectopa robiniella Clemens (Leoptidera: Gracillariidae) effect on biochemical parameters of Robinia pseudoacacia under conditions of an industrial city in Steppe Ukraine. Ekológia (Bratislava), 41: 340-350. Go to original source...
  21. Skórska Е., Murkowski А. (2018): Photosynthetic responses of Chlorella vulgaris L. to short-term UV-B radiation exposure. Acta Biologica Cracoviensia, Series Botanica, 60: 65-71.
  22. Stirbet A., Lazár D., Kromdijk J., Govindjee G. (2018): Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56: 86-104. Go to original source...
  23. Vasylenko O., Kondratenko T., Havryliuk O., Andrusyk Y., Kutovenko V., Dmytrenko Y., Grevtseva N., Marchyshyna Y. (2021): The study of the productivity potential of grape varieties according to the indicators of functional activity of leaves. Potravinarstvo Slovak Journal of Food Sciences, 15: 639-647. Go to original source...
  24. Wang X., Wang X., Chen Y., Berlyn G.P. (2019): Photosynthetic parameters of urban greening trees growing on paved land. iForest, 12: 403-410. Go to original source...
  25. Zhang Y., Guanter L., Joiner J., Song L., Guan K. (2018): Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data. Remote Sensing of Environment, 210: 362-374. Go to original source...
  26. Zhang P., Zhang Z., Li B., Zhang H., Hu J., Zhao J. (2020): Photosynthetic rate prediction model of newborn leaves verified by core fluorescence parameters. Scientific Reports, 10: 3013. Go to original source... Go to PubMed...
  27. Zhu Z., Cao H., Li X., Rong J., Cao X., Tian J. (2021): A carbon fixation enhanced Chlamydomonas reinhardtii strain for achieving the double-win between growth and biofuel production under non-stressed conditions. Frontiers in Bioengineering and Biotechnology, 8: 603513. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.