J. For. Sci., 2023, 69(12):539-549 | DOI: 10.17221/102/2023-JFS

Understanding the role of ecotypic factors in the early growth of Pinus sylvestris L.Original Paper

Jakub Hejtmánek, Jan Stejskal, Daniel Provazník, Jaroslav Čepl
Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

The ecological significance of Scots pine (Pinus sylvestris L.) in Europe, especially in areas devastated by bark beetles, has led to its consideration as a substitute for Norway spruce. This pioneering species boasts sun and drought tolerance, fast growth, and wood industry value. To gauge its potential, we examined two ecotypes across two test sites over two years, focusing on height and growth increment. Through statistical analysis employing R software and linear mixed models, we assessed heritability, genotype by environment interaction, and spatial correlations. Both ecotypes exhibited significant differences in height and increment, varying by year and site. Heritability was higher in the second year, with increment showing greater stability. Genetic correlations between sites were evident, suggesting stable increment ranking across locations. These findings underscore the role of ecotypic variation in Scots pine growth, advocating for its consideration in reforestation. Acknowledging such dynamics is vital for effective forest management and reforestation in Central Europe, promoting sustainability and informed decision-making. Further research will enhance this understanding of preserving and enhancing the region's tree populations.

Keywords: early selection; ecotypic variation; genetic correlations; heritability; Scots pine

Received: September 4, 2023; Revised: October 24, 2023; Accepted: October 27, 2023; Published: December 21, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hejtmánek J, Stejskal J, Provazník D, Čepl J. Understanding the role of ecotypic factors in the early growth of Pinus sylvestris L. J. For. Sci. 2023;69(12):539-549. doi: 10.17221/102/2023-JFS.
Download citation

References

  1. Alan M., Isik F. (2021): Genetic relationships between terminal shoot length, number of flushes and height in a 4-year-old progeny test of Pinus brutia Ten. Annals of Forest Science, 78: 1-10. Go to original source...
  2. Alan M., Öztürk H., Șiklar S., Ezen T., Korkmaz B., Çalișkan B., Özler H., Derİlgen S.I. (2009): Genetic parameters in Scots Pine (Pinus sylvestris L.) progeny tests in Turkey. In: Lucrările sesiunii științifice bienale cu participare internațională Pădurea și Dezvoltarea Durabilă, Brașov, Oct 17-18, 2008: 25-32.
  3. Alía R., Moro-Serrano J., Notivol E. (2001): Genetic variability of Scots pine (Pinus sylvestris) provenances in Spain: Growth traits and survival. Silva Fennica, 35: 27-38. Go to original source...
  4. Baltunis B.S., Gapare W.J., Wu H.X. (2010): Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia. Silvae Genetica, 59: 113-124. Go to original source...
  5. Białobok S., Boratyński A., Bugała W. (1993): Biologia sosny zwyczajnej. Poznań, Sorus: 624. (in Polish)
  6. Butler D.G., Cullis B.R., Gilmour A.R., Gogel B.J., Thompson R. (2017): ASReml-R Reference Manual, Version 4. Hemel Hempstead, VSN International Ltd.: 82.
  7. Calleja-Rodriguez A., Andersson Gull B., Wu H.X., Mullin T.J., Persson T. (2019): Genotype-by-environment interactions and the dynamic relationship between tree vitality and height in northern Pinus sylvestris. Tree Genetics & Genomes, 15: 1-15. Go to original source...
  8. Čáp J., Fulín M., Novotný P., Cvrčková H., Máchová P., Trčková O., Poláková L., Dostál J., Frýdl J. (2016): Genetická charakterizace významných regionálních populací borovice lesní v České republice. Lesnický průvodce. Strnady, Výzkumný ústav lesního hospodářství a myslivosti: 41. (in Czech)
  9. Carvalho A., Pavia I., Fernandes C., Pires J., Correia C., Bacelar E., Moutinho-Pereira J., Gaspar M.J., Bento J., Silva M.E., Lousada M.J., Lima-Brito J. (2017): Differential physiological and genetic responses of five European Scots pine provenances to induced water stress. Journal of Plant Physiology, 215: 100-109. Go to original source... Go to PubMed...
  10. Červenský J. (2017): Náhorní ekotyp borovice. Lesnická práce, 4: 17-19. (in Czech)
  11. Chen Z., Helmersson A., Westin J., Karlsson B., Wu H.X. (2018): Efficiency of using spatial analysis for Norway spruce progeny tests in Sweden. Annals of Forest Science, 75: 1-13. Go to original source...
  12. Dieters M.J., White T.L., Hodge G.R. (1995): Genetic parameter estimates for volume from full-sib tests of slash pine (Pinus elliottii). Canadian Journal of Forest Research, 25: 1397-1408. Go to original source...
  13. Ekvall L., Greger M. (2003): Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environmental Pollution, 121: 401-411. Go to original source... Go to PubMed...
  14. Galdina T., Khazova E. (2019): Adaptability of Pinus sylvestris L. to various environmental conditions. In: IOP Conference Series: Earth and Environmental Science, 316R: 012002. Go to original source...
  15. Giertych M. (1979): Summary of results on Scots pine (Pinus sylvestris L.) height growth in IUFRO provenance experiments. Silvae Genetica, 28: 136-152.
  16. Gülcü S., Bilir N. (2017): Growth and survival variation among scots pine (Pinus sylvestris L.) provenances. International Journal of Genomics, 2017: 1904623. Go to original source... Go to PubMed...
  17. Haapanen M. (2001): Time trends in genetic parameter estimates and selection efficiency for Scots pine in relation to field testing method. Forest Genetics, 8: 129-144.
  18. Hong Z., Fries A., Wu H.X. (2015): Age trend of heritability, genetic correlation, and efficiency of early selection for wood quality traits in Scots pine. Canadian Journal of Forest Research, 45: 817-825. Go to original source...
  19. Isik F., Holland J., Maltecca C. (2017): Genetic Data Analysis for Plant and Animal Breeding. Volume 400. Cham, Springer International Publishing: 400. Go to original source...
  20. Jansson G. (2007): Gains from selecting Pinus sylvestris in southern Sweden for volume per hectare. Scandinavian Journal of Forest Research, 22: 185-192. Go to original source...
  21. Kaňák J. (1999): Historie a současnost arboreta Sofronka. Lesnická práce, 78: 23-24. (in Czech)
  22. Kathke S., Bruelheide H. (2011): Differences in frost hardiness of two Norway spruce morphotypes growing at Mt. Brocken, Germany. Flora-Morphology, Distribution, Functional Ecology of Plants, 206: 120-126. Go to original source...
  23. Korecký J., Čepl J., Stejskal J., Faltinová Z., Dvořák J., Lstibůrek M., El-Kassaby Y.A. (2021): Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Scientific Reports, 11: 23119. Go to original source... Go to PubMed...
  24. Kroon J., Ericsson T., Jansson G., Andersson B. (2011): Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden. Tree Genetics & Genomes, 7: 1099-1111. Go to original source...
  25. Krzakowa M. (1979): Enzymatyczna zmienność miedzypopulacyjna sosny zwyczajnej (Pinus sylvestris L.). Poznań, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza: 43. (in Polish)
  26. Krzakowa M., Urbaniak L., Korczyk F.A. (1994): Chromatographic studies on phenolic compounds in Scots pine (Pinus sylvestris L.), Bulletin de la Société des Amis des Sciences et des Lettres de Poznań, 30: 11-21.
  27. Li Y., Suontama M., Burdon R.D., Dungey H.S. (2017): Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and application. Tree Genetics & Genomes, 13: 1-18. Go to original source...
  28. Mátyás C., Ackzell L., Samuel C.J.A. (2004): EUFORGEN Technical Guidelines for Genetic Conservation and Use for Scots Pine (Pinus sylvestris). Rome, International Plant Genetic Resources Institute: 6.
  29. Misi D., Puchałka R., Pearson C., Robertson I., Koprowski M. (2019): Differences in the climate-growth relationship of Scots pine: A case study from Poland and Hungary. Forests, 10: 243. Go to original source...
  30. Oleksyn J., Giertych M. (1984): Results of a 70 years old Scots pine (Pinus sylvestris L.) provenance experiment in Pulawy, Poland. Silvae Genetica, 33: 22-27.
  31. Olsson T., Ericsson T. (2002): Genetic parameter estimates of growth and survival of Pinus sylvestris with mixed model multiple-trait restricted maximum likelihood analysis. Scandinavian Journal of Forest Research, 17: 103-110. Go to original source...
  32. Pawlaczyk E.M., Bobowicz M.A., Korczyk A.F. (2010): Zmienność trzech naturalnych populacji Pinus sylvestris L. z różnych siedlisk Puszczy Białowieskiej oszacowana cechami igieł. Leśne Prace Badawcze, 71: 83-92. (in Polish) Go to original source...
  33. Pickett S.T.A., White P.S. (1985): The Ecology of Natural Disturbance and Patch Dynamics. Orlando, Academic Press: 472.
  34. Pospíšil J., Kobliha J. (1988): Šlechtění lesních dřevin. Brno, Vysoká škola zemědělská v Brně: 135. (in Czech)
  35. R Core Team (2008): A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at: https://www.r-project.org/
  36. Saenz-Romero C., Nordheim E.V., Guries R.P., Crump P.M. (2001): A case study of a provenance/progeny test using trend analysis with correlated errors and SAS PROC MIXED. Silvae Genetica, 50: 127-134.
  37. Surles S.E., White T.L., Hodge G.R. (1995): Genetic parameter estimates for seedling dry weight traits and their relationship with parental breeding values in slash pine. Forest Science, 41: 546-563. Go to original source...
  38. Szweykowski J., Urbaniak L. (1982): An interesting chemical polymorphism in Pinus sylvestris L. Acta Societatis Botanicorum Poloniae, 51: 441-452. Go to original source...
  39. Szweykowski J., Prus-Głowacki W., Hrynkiewicz J. (1994): The genetic structure of Scots pine (Pinus sylvestris L.) population from the top of Szczeliniec Wielki Mt., Central Sudetes. Acta Societatis Botanicorum Poloniae, 63: 315-324. Go to original source...
  40. Vacek Z., Linda R., Cukor J., Vacek S., Šimůnek V., Gallo J., Vančura K. (2021): Scots pine (Pinus sylvestris L.), the suitable pioneer species for afforestation of reclamation sites? Forest Ecology and Management, 485: 118951. Go to original source...
  41. Vizcaíno-Palomar N., González-Muñoz N., González-Martínez S.C., Alía R., Benito Garzon M. (2019): Most southern Scots pine populations are locally adapted to drought for tree height growth. Forests, 10: 555. Go to original source...
  42. Xiang B., Li B., Isik F. (2003): Time trend of genetic parameters in growth traits of Pinus taeda L. Silvae Genetica, 52: 114-120.
  43. Zas R. (2008): The impact of spatial heterogeneity on selection: A case study on Pinus pinaster breeding seedling orchards. Canadian Journal of Forest Research, 38: 114-124. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.