J. For. Sci., 2023, 69(11):497-513 | DOI: 10.17221/68/2023-JFS
Modelling the tree height-diameter relationship of Macedonian pine (Pinus peuce Gris.) forests in North MacedoniaOriginal Paper
- 1 Department of Forest Management, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
- 2 Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
- 3 Department of Forest and Wood Protection, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
The most crucial individual tree variables in forest management are diameter at breast height (DBH) and height of trees (H). Projection of stand development over time relies on accurate height-diameter functions. The main aim of this paper is to define the best usable model for tree height prediction from diameter at breast height. We explore the place where the Macedonian pine was discovered in the Baba Mountain in the Pelister National Park in North Macedonia. Thus, we established 48 experimental plots (EP) with a circle shape, a radius of 12.62 m and an area of 500 m2 each. The EP were established in pure Macedonian pine stands in an elevation gradient between 950 m a.s.l. and 1 700 m a.s.l. Every tree in the EP was attributed with data for diameter at breast height, tree height, and stand characteristics data (elevation, slope, aspect, coordinate) as well. For predicting the tree height, we used 40 models from many authors which are the most usable in forest practice. Also, we prepared evaluations and tests for all models, in order to choose the best responsive model for the Macedonian pine forest. For predicting the best tree height model for Macedonian pine, we decided on Mamoun's equation, with a high correlation value of 0.85 with 73% out of the observed data. Also, this model showed a lower root mean square error of 32.65, a lower model prediction accuracy of 6.77, and a lower mean absolute percent error of 11.73%. Finally, it can be concluded that the nonlinear connection between DBH and tree height is the most responsive regression model.
Keywords: connection; diameter at breast height; equations; predictions; tree height
Received: June 15, 2023; Revised: September 13, 2023; Accepted: September 27, 2023; Published: November 27, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Modelling the tree height-diameter relationship of Macedonian pine (Pinus peuce Gris.) forests in North Macedonia. J. For. Sci. 2023;69(11):497-513. doi: 10.17221/68/2023-JFS.
Supplementary files:
Download file | 68-2023-JFS_ESM.pdf File size: 139.08 kB |
References
- Akaike H. (1998): Information theory and an extension of the maximum likelihood principle. In: Parzen E., Tanabe K., Kitagawa G. (eds): Selected Papers of Hirotugu Akaike. New York, Springer New York: 199-213.
Go to original source...
- Alexandrov A.H., Andonovski V. (2011): Macedonian pine (Pinus peuce). EUFORGEN Technical Guidelines for Genetic Conservation and Use. Rome, International Plant Genetic Resources Institute: 6.
- Álvarez González J.G., Gadow K.V., Real Hermosilla P. (2001): Modelización del crecimiento y la evolución de bosques. Vienna, IUFRO: 55-68. (in Spanish)
- Arney J.D. (1985): A modeling strategy for the growth projection of managed stands. Canadian Journal of Forest Research, 15: 511-518.
Go to original source...
- Banin L., Feldpausch T.R., Phillips O.L., Baker T.R., Lloyd J., Affum-Baffoe K., Arets E.J.M.M., Berry N.J., Bradford M., Brienen R.J.W. et al. (2012): What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21: 1179-1190.
Go to original source...
- Barzdajn W. (2017): Assessment of functions describing the dependence of diameter at breast height and tree height in stands on the transformation of forest management to selection forest in the Sudeten. Acta Scientiarium Polonorum, 16: 165-176.
Go to original source...
- Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society: Series B (Methodological), 42: 1-16.
Go to original source...
- Bruchwald A. (1970): Badanie zale¿no¶ci wysoko¶ci od pier¶nicy w drzewostanach sosnowych. Folia Forestalia Polonica A, 16: 163-170. (in Polish)
- Burkhart H.E., Strub M.R. (1974): A model for simulation of planted loblolly pine stands. In: Fries J. (ed.): Growth Models for Tree and Stand Simulation. Stockholm, Skogshögskolan: 128-135.
- Calama R., Montero G. (2004): Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34: 150-163.
Go to original source...
- Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H., Bailey R.L. (1983): Timber Management: A Quantitative Approach. New York, John Wiley & Sons, Inc.: 333.
- Condés S., Sterba H., Aguirre A., Bielak K., Bravo-Oviedo A., Coll L., Pach M., Pretzsch H., Vallet P., Del Río M. (2018): Estimation and uncertainty of the mixing effects on Scots pine - European beech productivity from National Forest Inventories data. Forests, 9: 518.
Go to original source...
- Crecente-Campo F., Tomé M., Soares P., Diéguez-Aranda U. (2010): A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259: 943-952.
Go to original source...
- Curtis R.O. (1967): Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science, 13: 365-375.
- Curtis R.O. (1981): A new stand simulator for coast Douglas-fir: DFSIM user's guide. Portland, US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station: 79.
- El Mamoun H.O., El Zein A.I., El Mugira M.I. (2012): Modelling height-diameter relationships of selected economically important natural forests species. Journal of Forest Products and Industries, 2: 34-42.
- El Mamoun H.O., El Zein A.I., El Mugira M.I. (2013): Height-diameter prediction models for some utilitarian natural tree species. Journal of Forest Products and Industries, 2: 31-39.
- Em H. (1969): Site of Macedonian pine at Galicica Mountain. Forest Review, 17: 3-6.
- Fast A.J., Ducey M.J. (2011): Height-diameter equations for select New Hampshire tree species. Northern Journal of Applied Forestry, 28: 157-160.
Go to original source...
- Feldpausch T.R., Banin L., Phillips O.L., Baker T.R., Lewis S.L., Quesada C.A., Affum-Baffoe K., Arets E.J.M.M., Berry N.J., Bird M. et al. (2011): Height-diameter allometry of tropical forest trees. Biogeosciences, 8: 1081-1106.
Go to original source...
- Fu L., Lei X., Sharma R.P., Li H., Zhu G., Hong L., You L., Duan G., Guo H., Lei Y., Li Y., Tang S. (2018): Comparing height-age and height-diameter modelling approaches for estimating site productivity of natural uneven-aged forests. Forestry: An International Journal of Forest Research, 91: 419-433.
Go to original source...
- Gadow K., Bredenkamp B. (1992): Forest Management. Pretoria, Academica Pretoria: 635.
- Gómez-García E., Diéguez-Aranda U., Castedo-Dorado F., Crecente-Campo F. (2013): A comparison of model forms for the development of height-diameter relationships in even-aged stands. Forest Science, 60: 560-568.
Go to original source...
- Grubb P.J. (1977): Control of forest growth and distribution on wet tropical mountains: With special reference to mineral nutrition. Annual Review of Ecology and Systematics, 8: 83-107.
Go to original source...
- Horvat I. (1950): Science of plant communities. Zagreb, Institut za Sumarska Istrazivanja: 77.
- Huang S., Price D., Titus S.J. (2000): Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 129: 125-141.
Go to original source...
- Huang S., Yang Y., Wang Y. (2003): A critical look at procedures for validating growth and yield models. In: Amaro A., Reed D., Soares P. (eds): Modelling Forest Systems. Sesimbra, CABI International: 271-292.
Go to original source...
- Huang S., Wiens D.P., Yang Y., Meng S.X., Vanderschaaf C.L. (2009): Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods. Forest Ecology and Management, 258: 1235-1247.
Go to original source...
- Kang H., Seely B., Wang G., Cai Y., Innes J., Zheng D., Chen P., Wang T. (2017): Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China. New Zealand Journal of Forestry Science, 47: 20.
Go to original source...
- Kearsley E., Moonen P.C.J., Hufkens K., Doetterl S., Lisingo J., Boyemba Bosela F., Boeckx P., Beeckman H., Verbeeck H. (2017): Model performance of tree height-diameter relationships in the central Congo Basin. Annals of Forest Science, 74: 7.
Go to original source...
- Korsuò F. (1935): ®ivot normálního porostu ve vzorcích. Lesnická práce, 14: 289-300. (in Czech)
- Koshanin N. (1924): Geolo¹ki i geografski momenti u razviæu flore Ju¾ne Srbije. Zbornik radova posveæen J. Cvijiæu. In: Proceeding dedicated to Ј. Cvijiæu, Beograd, Apr 20-25, 1924: 591-603. (in Serbian)
- Larson B.C. (1986): Development and growth of even-aged stands of Douglas-fir and grand fir. Canadian Journal of Forest Research, 16: 367-372.
Go to original source...
- Lazarevski A. (1993): Climate in Macedonia. Skopje, Culture: 79.
- Lei X., Peng C., Wang H., Zhou X. (2009): Individual height-diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada. The Forestry Chronicle, 85: 43-56.
Go to original source...
- Levakoviæ A. (1935): Analitièki izraz za sastojinsku visinsku krivulju. Glasnik za ¹umske pokuse: Annales pro experimentis foresticis, 4: 283-310. (in Croatian)
- Li Y.Q., Deng X.W., Huang Z.H., Xiang W.H., Yan W.D., Lei P.F., Zhou X.L., Peng C.H. (2015): Development and evaluation of models for the relationship between tree height and diameter at breast height for Chinese-fir plantations in subtropical China. PLoS ONE, 10: e0125118.
Go to original source...
Go to PubMed...
- Lundqvist B. (1957): On the height growth in cultivated stands of pine and spruce in Northern Sweden. Medd Fran Statens Skogforsk, 47: 1-64.
- Mand¾ukovski D., Аcevski Ј., Јovanov Т. (2009): Extension of the areal of molika pine (Pinus peuce Grisb.) in the R. of Macedonia. Forest Review, 42: 155-163.
- Mand¾ukovski D., Teofilovski A., Andreevski M., Æu¹terevska R., Tzonev R., Dimitrov M. (2022): Relationships between vegetation of Macedonian pine (Griseb.) and different types of soils on which it develops. Hacquetia, 21: 89-106.
Go to original source...
- Mehtätalo L. (2004): A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research, 34: 131-140.
Go to original source...
- Mehtätalo L., de-Miguel S., Gregoire T.G. (2015): Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45: 826-837.
Go to original source...
- Meixner J. (1964): Krzywa wysoko¶ci a dok³adno¶æ okre¶lenia mi±¿szo¶ci drzewostanu za pomoc± tabel mi±¿szo¶ci drzew stoj±cych. Roczniki Wy¿szej Szko³y Rolniczej w Poznaniu, 23: 44-53. (in Polish)
- Mensah S., Pienaar O.L., Kunneke A., du Toit B., Seydack A., Uhl E., Pretzsch H., Seifert T. (2018): Height-diameter allometry in South Africa's indigenous high forests: Assessing generic models performance and function forms. Forest Ecology and Management, 410: 1-11.
Go to original source...
- Michailoff I. (1943): Zahlenmäßiges verfahren für die Ausführung der bestandeshöhenkurven. Centralblatt und Tharandter Forstliches Jahrbuch, 6: 273-279. (in German)
- Molto Q., Hérault B., Boreux J.J., Daullet M., Rousteau A., Rossi V. (2014): Predicting tree heights for biomass estimates in tropical forests - A test from French Guiana. Biogeosciences, 11: 3121-3130.
Go to original source...
- Näslund M. (1929): Antalet provträd och höjdkurvans noggrannhet. Bulletin de l'institut d'experimentation forestière de Suède, 25: 93-154. (in Swedish)
- Newton P.F., Amponsah I.G. (2007): Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247: 149-166.
Go to original source...
- Ng'andwe P., Chungu D., Yambayamba A.M., Chilambwe A. (2019): Modeling the height-diameter relationship of planted Pinus kesiya in Zambia. Forest Ecology and Management, 447: 1-11.
Go to original source...
- Özçelik R., Cao Q.V., Trincado G., Göçer N. (2018): Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management, 419: 240-248.
Go to original source...
- Parresol B.R. (1992): Baldcypress height-diameter equations and their prediction confidence intervals. Canadian Journal of Forest Research, 22: 1429-1434.
Go to original source...
- Pearl R., Reed L.J. (1920): On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences, 6: 275-288.
Go to original source...
Go to PubMed...
- Pejovski B. (1971): Spread of Macedonian pine in Blagoevgrad district area (Bulgaria). Forest Review, 19: 59-61.
- Peng C., Zhang L., Liu J. (2001): Developing and validating nonlinear height-diameter models for major tree species of Ontario's boreal forests. Northern Journal of Applied Forestry, 18: 87-94.
Go to original source...
- Peng C., Zhang L., Zhou X., Dang Q., Huang S. (2004): Developing and evaluating tree height-diameter models at three geographic scales for black spruce in Ontario. Northern Journal of Applied Forestry, 21: 83-92.
Go to original source...
- Peschel W. (1938): Mathematical methods for growth studies of trees and forest stands and the results of their application. Tharandter Forstliches Jahrburch, 89: 169-247.
- Pettersson H. (1955): Barrskogens volymproduktion. Meddelande från Statens Skogsforskningsinstitut, 45: 391. (in Swedish)
- Popnikola N., Jovanèeviæ M., Vidakoviæ M. (1978): Genetics of Pinus peuce Gris. Annales Forestales, 7: 21-31.
- Prodan M. (1951): Messung der Waldbestande. Frankfurt am Main, J.D. Sauerländer's Verlag: 260. (in German)
- Prodan M. (1965): Holzmesslehre. Frankfurt am Main, J.D. Sauerländer's Verlag: 215. (in German)
- Ratkwosky D.A. (1990): Handbook of Nonlinear Regression Models. New York, M. Dekker: 241.
- Rymer-Dudzinska T. (1974): Zwiazek miedzy wysokoscia a piersnica drzew w zaleznosci od roznych czynnikow i cech drzewostanu. Folia Forestalia Polonica, Seria A: Lesnictwo, 21: 155-172. (in Polish)
- Sánchez C.A.L., Varela J.G., Dorado F.C., Alboreca A.R., Soalleiro R.R., González J.G.Á., Rodríguez F.S. (2003): A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science, 60: 237-245.
Go to original source...
- Sánchez-González M., Cañellas I., Montero G. (2007): Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain. Forest Systems, 16: 76-88.
Go to original source...
- Schumacher F.X. (1939): A new growth curve and its application to timber yield studies. Journal of Forestry, 37: 819-820.
- Schumacher F.X., Day B.B. (1939): The influence of precipitation upon the width of annual rings of certain timber trees. Ecological Monographs, 9: 387-429.
Go to original source...
- Sharma M., Yin Zhang S. (2004): Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19: 442-451.
Go to original source...
- Sibbesen E. (1981): Some new equations to describe phosphate sorption by soils. Journal of Soil Science, 32: 67-74.
Go to original source...
- Sileshi G.W. (2014): A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 329: 237-254.
Go to original source...
- Spies T., Cohen W.B. (1992): An index of canopy height diversity. Coastal Oregon Productivity Enhancement Program (COPE) Report, 5: 5-7.
- Stanisz T. (1986): Funkcje jednej zmiennej w badaniach ekonomicznych. Warsaw, Pañstwowe Wydawnictwo Naukowe: 291. (in Polish)
- Stoffels A., Van Soest J. (1953): The main problems in sample plots. Ned Boschb Tijdschr, 25: 190-199.
- Stout B.B., Shumway D.L. (1982): Site quality estimation using height and diameter. Forest Science, 28: 639-645.
- Strand L. (1959): The accuracy of some methods for estimating volume and increment on sample plots. Det Norske Skogsforsøksvesen, 15: 284-392.
- Temesgen H., v. Gadow K. (2004): Generalized height-diameter models - An application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123: 45-51.
Go to original source...
- Trajkovski V. (1973): Site of Macedonian pine at Jablanica mountain. Forest Review, 21: 42-45.
- Trajkovski V. (1977): One more site of Macedonian pine on Mountain Jablanica. Forest Review, 25: 65-68.
- Trorey L. (1932): A mathematical method for the construction of diameter height curves based on site. The Forestry Chronicle, 8: 121-132.
Go to original source...
- Van Laar A., Akça A. (2007): Forest Mensuration. Dordrecht, Springer: 1-377.
Go to original source...
- Vanclay J.K. (1995): Synthesis: Growth models for tropical forests: A synthesis of models and methods. Forest Science, 41: 7-42.
Go to original source...
- Vanclay J.K. (2009): Tree diameter, height and stocking in even-aged forests. Annals of Forest Science, 66: 702-702.
Go to original source...
- Vospernik S., Monserud R.A., Sterba H. (2010): Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine? Forest Ecology and Management, 260: 1735-1753.
Go to original source...
Go to PubMed...
- Weibull W. (1951): A statistical distribution function of wide applicability. Journal of Applied Mechanics: 293-297.
Go to original source...
- Wykoff W. (1982): User's guide to the stand prognosis model. Ogden, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: 111.
Go to original source...
- Xifei L., Shouzheng T., Guoren Y., Dechang B. (2012): Self-adjusted height-diameter curves and one-entry volume model. Forest Research, 7: 512-518.
- Zeide B., Vanderschaaf C. (2002): The effect of density on the height-diameter relationship. In: Oultcalt K.W. (ed.): Proceedings of the 11th Biennial Southern Silvicultural Research Conference, Knoxville, Mar 20-22, 2001: 463-466.
- Zhang B., Sajjad S., Chen K., Zhou L., Zhang Y., Yong K.K., Sun Y. (2020): Predicting tree height-diameter relationship from relative competition levels using quantile regression models for Chinese fir (Cunninghamia lanceolata) in Fujian province, China. Forests, 11: 183.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.