J. For. Sci., 2023, 69(7):305-316 | DOI: 10.17221/133/2022-JFS

Assessment of the Ellenberg quotient as a practical tool for vertical vegetation zonationOriginal Paper

Petr Dujka1,2, Antonín Kusbach1
1 Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Forest Management Institute Brandýs nad Labem, Branch Kroměříž, Kroměříž, Czech Republic

The Ellenberg quotient (EQ) is a climate index defined as a ratio of the hottest month's temperature and the average annual precipitation sum. The quotient indirectly expresses the relationship between climate and vegetation, and its application is related to the ecological niche of Fagus sp. Although the quotient was curated on the grounds of field research primarily on German vegetation, the possibilities of its utilisation are not limited to the Central European region. The objective of this study is (i) to compare the EQ values calculated for the forest vegetation zones in the Czech Republic with the published data using the ecological niche of Fagus sylvatica; and (ii) to compare the new EQ-based vertical model with field empirical mapping. The study area is the Czech Republic, Central Europe. We used climate data from 1970–2000 and the data of the National Forest Inventory, 2nd cycle (2011–2015), representing an objective data design. Geospatial analytic methods, machine learning (boosting), and verification through statistical testing were performed. The results indicate higher EQ values between the two most substantial spatial frames – the Hercynicum and Carpaticum regions. By comparing empirical mapped units to their climatic potential (in the EQ), a match was found only within the Carpaticum region. The study presents a concretisation of the general climate index for a specific region, adds to the knowledge about the Fagus ecological niche in context with the Central European vegetation, and also points to the EQ's potential for evaluating the concept of vertical differentiation of forest communities, as well as a possible prediction tool for the vegetation migration in context with climate change.

Keywords: European beech; Fagus sylvatica; forest vegetation zones; national forest inventory; zonal concept

Received: September 15, 2022; Accepted: May 25, 2023; Prepublished online: July 20, 2023; Published: July 26, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dujka P, Kusbach A. Assessment of the Ellenberg quotient as a practical tool for vertical vegetation zonation. J. For. Sci. 2023;69(7):305-316. doi: 10.17221/133/2022-JFS.
Download citation

References

  1. Ambros Z. (1993): Kombinovaná metoda na určování vegetačního stupně a ekologických řad. Lesnictví, 39: 71-474. (in Czech)
  2. Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. (2018): Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5: 180214. Go to original source... Go to PubMed...
  3. Bína J., Demek J. (2012): Z nížin do hor: geomorfologické jednotky České republiky. Praha, Academia: 344. (in Czech)
  4. Buček A., Lacina J. (2007): Geobiocenologie II. Brno, Mendelova zemědělská a lesnická univerzita: 251. (in Czech)
  5. Chytrý M. (2012): Vegetation of the Czech Republic: Diversity, ecology, history and dynamics. Preslia, 84: 427-504.
  6. Chytrý M. (2013): Vegetation of the Czech Republic. 4. Forest and Scrub Vegetation. Praha, Academia: 551. (in Czech)
  7. Chytrý M., Tichý L., Dřevojan P., Sádlo J., Zelený D. (2018): Ellenberg-type indicator values for the Czech flora. Preslia, 90: 83-103. Go to original source...
  8. Culek M., Buček A., Grulich V., Hartl P., Hrabica A., Kocián J., Kyjovský Š., Lacina J. (2005): Biogeografické členění ČR II. díl (Biochory). Praha, Agentura ochrany přírody a krajiny ČR: 589. (in Czech)
  9. Czúcz B., Gálhidy L., Mátyás C. (2011): Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science, 68: 99-108. Go to original source...
  10. De'ath G. (2007): Boosted trees for ecological modeling and prediction. Ecology, 88: 243-251. Go to original source... Go to PubMed...
  11. Dujka P., Kusbach A. (2022): Zonal concept in vegetation classification: review. Zprávy lesnického výzkumu, 67: 236-245. (in Czech)
  12. Ellenberg H. (2009): Vegetation Ecology of Central Europe. 4th Ed. Cambridge, Cambridge University Press: 756.
  13. Ellenberg H., Leuschner C. (2010): Vegetation Mitteleuropas mit den Alpen: In ökologischer, dynamischer und historischer Sicht. 6th Ed. Stuttgart, UTB: 1357. (in German)
  14. Fang J., Lechowicz M.J. (2006): Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33: 1804-1819. Go to original source...
  15. Fick S.E., Hijmans R.J. (2017): WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315. Go to original source...
  16. Frey U.J. (2020): Putting machine learning to use in natural resource management - Improving model performance. Ecology and Society, 25: 45. Go to original source...
  17. Führer E., Horváth L., Jagodics A., Machon A., Szabados I. (2011): Application of a new aridity index in Hungarian forestry practice. Quarterly Journal of the Hungarian Meteorological Service, 115: 205-216.
  18. Funder D.C., Ozer D.J. (2019): Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2: 156-168. Go to original source...
  19. Garamszegi B., Kern Z. (2014): Climate influence on radial growth of Fagus sylvatica growing near the edge of its distribution in Bükk Mts., Hungary. Dendrobiology, 72: 93-102. Go to original source...
  20. Hastie T., Tibshirani R., Friedman J. (2009): Boosting and additive trees. In: Hastie T., Tibshirani R., Friedman J. (eds.): The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Ed. New York, Springer: 337-387. Go to original source...
  21. Hintze J.L., Nelson R.D. (1998): Violin plots: A box plot-density trace synergism. The American Statistician, 52: 181-184. Go to original source...
  22. Hohnwald S., Indreica A., Walentowski H., Leuschner C. (2020): Microclimatic tipping points at the beech-oak ecotone in the western Romanian Carpathians. Forests, 11: 1-17. Go to original source...
  23. Holuša O., Holuša st. J. (2011). Characteristics of the 7th (Fageti-piceeta s.lat.), 8th (Piceeta s.lat.) and 9th (Pineta mugo s.lat.) vegetation tiers of the northeastern Moravia and Silesia (Czech Republic). Acta Musei Beskidensis, 3: 1-15. Go to original source...
  24. Houston Durrant T., de Rigo D., Caudullo G. (2016): Fagus sylvatica and other beeches in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds.): European Atlas of Forest Tree Species. Luxembourg, Publications Office of the EU: 94-95.
  25. Hradecký J., Brázdil R. (2016): Climate in the past and present in the Czech lands in the central European context. In: Pánek T., Hradecký J. (eds.): Landscapes and Landforms of the Czech Republic. Cham, Springer: 19-28. Go to original source...
  26. Hruban R. (2010): Vyhodnocení makroklimatických charakteristik LVS. Kroměříž, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem, Branch Kroměříž: 103. (in Czech)
  27. Jensen L.U., Lawesson E.J., Balslev H., Forchhammer M.C. (2003): Predicting the distribution of Carpinus betulus in Denmark with Ellenberg's Climate Quotient. Nordic Journal of Botany, 23: 57-67. Go to original source...
  28. Kubošová K., Komprda J., Bednářová Z., Hájek O., Sáňka M., Jarkovský J., Matoušková P., Kalábová T. (2011): Vyhodnocení dat Databáze lesnické typologie a úpravy typologického systému ÚHÚL: Závěrečná zpráva - 2. část. Brno, CETOCOEN, Masarykova univerzita: 129. (in Czech)
  29. Kučera M., Adolt R. (2019): Národní inventarizace lesů v České republice - výsledky druhého cyklu 2011-2015. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem: 439. (in Czech)
  30. Kusbach A., Friedl M., Zouhar V., Mikita T. (2017): Assessing forest classification in a landscape-level framework: An example from Central European forests. Forests, 8: 461. Go to original source...
  31. Kusbach A., Šebesta J., Friedl M., Zouhar V., Mikita T. (2018): 60 Years of concept of Forest Vegetation Zonation in Czech. In: Hrubá V., Friedl M. (eds.): Geobiocenologie a lesnická typologie a jejich aplikace v lesnictví a krajinářství. Brno, Ústav lesnické botaniky, dendrologie a geobiocenologie, Lesnická a dřevařská fakulta Mendelovy univerzity v Brně: 81-96. (in Czech)
  32. Macků J. (2012): Methodology for establishing the degree of naturalness of forest stands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60: 161-166. Go to original source...
  33. Macků J. (2014): Climatic characteristics of Forest Vegetation Zones of the Czech Republic. Journal of Landscape Ecology, 7: 39-48. Go to original source...
  34. Major J. (1951): A functional, factorial approach to plant ecology. Ecology, 32: 392-412. Go to original source...
  35. Maleki K., Zeller L., Pretzsch H. (2020): Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak. iForest - Biogeosciences and Forestry, 13: 80-88. Go to original source...
  36. Matějka K. (2013): Climate gradients and modelling of the forest altitudinal zones in the Czech Republic. In: Geobiocenologie a její aplikace v lesnictví a krajinářství, Brno, Dec 6-7, 2012: 103-119. Available at: https://www.infodatasys.cz/public/model_lvs_cr_2012.pdf (in Czech)
  37. Mátyás C., Berki I., Czúcz B., Gálos B., Móricz N., Rasztovitis E. (2010): Future of beech in southeast Europe from the perspective of evolutionary ecology. Acta Silvatica et Lignaria Hungarica, 6: 91-100. Go to original source...
  38. Mellert K.H., Ewald J., Hornstein D., Dorado-Liñán I., Jantsch M., Taeger S., Zang C., Menzel A., Kölling C. (2016): Climatic marginality: A new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg's quotient. European Journal of Forest Research, 135: 137-152. Go to original source...
  39. Mellert K.H., Šeho M. (2022): Suitability of Fagus orientalis Lipsky at marginal Fagus sylvatica L. forest sites in southern Germany. iForest - Biogeosciences and Forestry, 15: 417-423. Go to original source...
  40. Mikeska M., Prausová R. (2013): Peat adler woods - A new category in forest typological classification. Zprávy lesnického výzkumu, 58: 294-306. (in Czech)
  41. Miletić B., Orlović S., Lalić B., Đurđević V., Mandić M.V., Vuković A., Gutalj M., Stjepanović S., Matović B., Stojanović D.B. (2021): The potential impact of climate change on the distribution of key tree species in Serbia under RCP4.5 and RCP 8.5 scenarios. Austrian Journal of Forest Science, 138: 183-208.
  42. Neniu A.I., Vlăduț A.Ș. (2020): The influence of climatic conditions on the forest vegetation within the Getic Subcarpatians - Oltenia sector. University of Craiova, 21: 5-18.
  43. Novák J., Dušek D. (2021): Thinning of silver fir stands - Review. Zprávy lesnického výzkumu, 66: 176-187. (in Czech)
  44. Pánek T., Kapustová V. (2016): Long-term geomorphological history of the Czech Republic. In: Pánek T., Hradecký J. (eds.): Landscapes and Landforms of the Czech Republic. Cham, Springer: 29-39. Go to original source...
  45. Patil I. (2021): Visualizations with statistical details: The 'ggstatsplot' approach. Journal of Open Source Software, 6: 3167. Go to original source...
  46. Plíva K. (1971): Typologický systém ÚHÚL. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů: 90. (in Czech)
  47. Plíva K., Žlábek I. (1986): Přírodní lesní oblasti ČSR. Praha, Státní zemědělské nakladatelství: 313. (in Czech)
  48. Průša E. (2001): Pěstování lesů na typologických základech. Kostelec nad Černými lesy, Lesnická práce: 593. (in Czech)
  49. QGIS Development Team (2023): QGIS Geographic Information System. Open Source Geospatial Foundation. Available at: https://qgis.org/en/site/ (accessed Jan 6, 2023).
  50. Randuška D., Vorel J., Plíva K. (1986): Fytocenológia a lesnická typológia. Bratislava, Príroda: 339. (in Slovak)
  51. Remeš J. (2022): Perspektivy pěstování jedle bělokoré v době klimatické změny. In: Pěstování jedle bělokoré v podmínkách klimatické změny. Praha, Česká lesnická společnost, z. s.: 7-17. (in Czech)
  52. Salamon-Albert É., Lőrincz P., Pauler G., Bartha D., Horváth F. (2016): Drought stress distribution responses of continental beech forests at their xeric edge in Central Europe. Forests, 7: 298. Go to original source...
  53. Šamonil P., Viewegh J. (2005): Forest site classification of forest ecosystems in Bohemian Karst (Czech Republic). Journal of Forest Science, 51: 508-518. Go to original source...
  54. Šamonil P., Polesná K., Unar P. (2009): Plant community variability within potential natural vegetation units: A case study from the Bohemian Karst. Journal of Forest Science, 55: 485-501. Go to original source...
  55. Stojanović D.B., Kržič A., Matović B., Orlović S., Duputie A., Djurdjević V., Calić Z., Stojnić S. (2013): Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology, 176: 91-103. Go to original source...
  56. Ústav pro hospodářskou úpravu lesů (ÚHÚL) (2023): Přehled lesních typů a souborů lesních typů v ČR. Available at: https://www.uhul.cz/wp-content/uploads/tabulka-LT_2023_web.pdf (in Czech)
  57. Vacek S., Simon J. (2009): Zakládání a stabilizace lesních porostů na bývalých zemědělských a degradovaných půdách. Kostelec nad Černými lesy, Lesnická práce: 792. (in Czech)
  58. Wilcoxon F. (1945): Individual comparisons by ranking methods. Biometrics Bulletin, 1: 80-83. Go to original source...
  59. Zlatník A. (1955): Zdůvodnění komplexního typologického výzkumu a průzkumu lesů a přehled skupin lesních typů ČSR. In: Sborník Československé akademie zemědělských věd: řada Lesnictví. Praha, Ústav vědeckotechnických informací pro zemědělství: 219-248. (in Czech)
  60. Zlatník A. (1961): Grossgliederung der slowakischen Wälder in waldtypologischer und pflanzensoziologischer Auffassung. Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech. Hochschule, Stiftung Rübel, 36: 52-90. (in German)
  61. Zlatník A. (1963): Die Vegetationsstufen und deren Indikation durch Pflanzenarten an Beispiel der Wälder der ČSSR. Preslia, 35: 31-51. (in German)
  62. Zlatník A. (1976): Přehled skuptypů geobiocénů původně lesních a křovinných. Zprávy Geografického ústavu ČSAV, 13: 55-64. (in Czech)
  63. Zouhar V. (2012): Database of Czech Forest Classification System. Biodiversity and Ecology, 4: 346. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.