J. For. Sci., 2023, 69(7):287-304 | DOI: 10.17221/125/2022-JFS

Assessment of aboveground biomass and carbon stock of subtropical pine forest of PakistanOriginal Paper

Nizar Ali1, Muhammad Saad1, Anwar Ali2, Naveed Ahmad3, Ishfaq Ahmad Khan4, Habib Ullah5, Areeba Binte Imran3
1 Department of Forestry and Wildlife Management, University of Haripur, Haripur, Pakistan
2 Pakistan Forest Institute Peshawar, Peshawar, Pakistan
3 Department of Forestry and Range Management, University of Arid Agriculture Rawalpindi, Pakistan
4 Department of Forest Science & Biodiversity, Faculty of Forestry and Environment, University Putra Malaysia, UPM Serdang, Malaysia
5 School of Forestry, North-East Forestry University, Herbin, China

The presented study estimated the aboveground biomass (AGB) of Pinus roxburghii (chir pine) natural forests and plantations, and created biomass maps using a relationship (regression model) between AGB and Sentinel-2 spectral indices. The mean AGB and BGB (belowground biomass) of natural forests were 79.54 Mg·ha–1 and 20.68 Mg·ha–1, respectively, whereas the mean AGB and BGB of plantations were 94.48 Mg·ha–1 and 24.56 Mg·ha–1, respectively. Correlation showed that mean diameter at breast height (DBH) and mean height have weak relationships with AGB, and BGB has shown correlation coefficients (R2 = 0.46) and (R2 = 0.56) for polynomial models. Regression models between AGB (Mg·ha–1) of Pinus roxburghii natural forest and Sentinel-2 spectral indices showed a strong relationship with Ratio Vegetation Index (RVI) with R2 = 0.72 followed by Normalized Difference Vegetation Index (NDVI) and Atmospherically Resistant Vegetation Index (ARVI) with R2 = 0.70. In contrast, the lower performance of spectral indices has been shown in regression with plantation AGB. Correlation coefficients (R2) were 0.41, 0.41, and 0.40 for RVI, NDVI, and ARVI, respectively. All indices showed that the distribution of AGB data was not the best fit with the linear regression model. Therefore, non-linear exponential and power models were considered the best fit for NDVI, RVI, and ARVI. A biomass map was developed from RVI for both natural forests and plantation because RVI has the highest R2 and lowest P-value.

Keywords: natural forest; Pinus roxburghii; plantations; regression analysis; Sentinel-2; vegetation index

Received: August 31, 2022; Accepted: May 11, 2023; Prepublished online: July 10, 2023; Published: July 26, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ali N, Saad M, Ali A, Ahmad N, Khan IA, Ullah H, Binte Imran A. Assessment of aboveground biomass and carbon stock of subtropical pine forest of Pakistan. J. For. Sci. 2023;69(7):287-304. doi: 10.17221/125/2022-JFS.
Download citation

Supplementary files:

Download file125-2022-JFS_ESM.pdf

File size: 79.07 kB

References

  1. Adan M.S. (2017): Integrating Sentinel-2 derived vegetation indices and terrestrial laser scanner to estimate above-ground biomass/carbon in Ayer Hitam tropical forest Malaysia. [MSc. Thesis.] Enschede, University of Twente.
  2. Afzal M., Akhtar A.M. (2011): Estimation of biomass and carbon stock: Chichawatni Irrigated Plantation in Punjab, Pakistan. In: SDPI's 14th Sustainable Development Conference, Islamabad, Dec 13-15, 2011.
  3. Ahmad N., Ullah S., Zhao N., Mumtaz F., Ali A., Ali A., Shakir M. (2023): Comparative analysis of remote sensing and geo-statistical techniques to quantify forest biomass. Forests, 14: 379. Go to original source...
  4. Ali A., Ayaz M., Muhammad S. (2017): A study of stand structure of temperate forests of Kaghan valley, Mansehra, Khyber Pakhtunkhwa. The Pakistan Journal of Forestry, 67: 20171.
  5. Ali A., Saleem U., Shaiza B., Naveed A., Asad A., Khan M.A. (2018): Quantifying forest carbon stocks by integrating satellite images and forest inventory data. Austrian Journal of Forest Science/Centralblatt für das gesamte Forstwesen, 135: 93-117.
  6. Ali A., Ashraf M.I., Gulzar S., Akmal M. (2020a): Development of an allometric model for biomass estimation of Pinus roxburghii, growing in subtropical pine forests of Khyber Pakhtunkhwa, Pakistan. Sarhad Journal of Agriculture, 36: 236-244. Go to original source...
  7. Ali A., Ashraf M.I., Gulzar S., Akmal M. (2020b): Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: implications for REDD+ and climate change mitigation. Environmental Monitoring and Assessment, 192: 1-13. Go to original source... Go to PubMed...
  8. Amir M., Liu X., Ahmad A., Saeed S., Mannan A., Muneer M.A. (2018): Patterns of biomass and carbon allocation across chronosequence of chir pine (Pinus roxburghii) forest in Pakistan: Inventory-based estimate. Advances in Meteorology, 2018: 1-8. Go to original source...
  9. Amiri F., Tabatabaie T. (2009): Operational monitoring of vegetative cover by remote sensing in semi-arid lands of Iran. In: Proceedings of the 7th FIG Regional Conference, Spatial Data Serving People: Land Governance and the Environment-Building the Capacity, Hanoi, Oct 19-22, 2009: 1-18.
  10. Babbar D., Areendran G., Sahana M., Sarma K., Raj K., Sivadas A. (2021): Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278: 123333. Go to original source...
  11. Banday M., Bhardwaj D.R., Pala N.A. (2018): Variation of stem density and vegetation carbon pool in subtropical forests of Northwestern Himalaya. Journal of Sustainable Forestry, 37: 389-402. Go to original source...
  12. Bukhari B.S.S., Haider A., Laeeq M.T. (2012): LAND Cover Atlas of Pakistan. Peshawar, Pakistan Forest Institute: 140.
  13. Castillo J.A.A., Apan A.A., Maraseni T.N.., Salmo S.G. (2017): Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photo and Remote Sensing, 134: 75-85. Go to original source...
  14. Chen P.Y., Fedosejevs G., Tiscareño-López M., Arnold J.G. (2006): Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: An example at corn fields in western Mexico. Environmental Monitoring and Assessment, 119: 69-82. Go to original source... Go to PubMed...
  15. Chen L., Ren C., Bao G., Zhang B., Wang Z., Liu M., Liu J. (2022): Improved object-based estimation of forest aboveground biomass by integrating LiDAR data from GEDI and ICESat-2 with multi-sensor images in a heterogeneous mountainous region. Remote Sensing, 14: 2743. Go to original source...
  16. Das S., Singh T.P. (2012): Correlation analysis between biomass and spectral vegetation indices of forest ecosystem. International Journal of Engineering Research & Technology, 1: 1-13.
  17. FAO (2020): Global Forest Resources Assessment 2020 - Key Findings. Rome, FAO: 16.
  18. Frampton W.J., Dash J., Watmough G., Milton E.J. (2013): Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82: 83-92. Go to original source...
  19. Goetz S., Dubayah R. (2011): Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management, 2: 231-244. Go to original source...
  20. Houghton R.A., Byers B., Nassikas A.A. (2015). A role for tropical forests in stabilizing atmospheric CO2. Nature Climate Change, 5: 1022-1023. Go to original source...
  21. Huang L., Zhou M., Lv J., Chen K. (2020): Trends in global research in forest carbon sequestration: A bibliometric analysis. Journal of Cleaner Production, 252: 119908. Go to original source...
  22. Imran A.B., Ahmed S. (2018): Potential of Landsat-8 spectral indices to estimate forest biomass. International Journal of Human Capital in Urban Management, 3: 303-314.
  23. Imran A.B., Khan K., Ali N., Ahmad N., Ali A., Shah K. (2020): Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6: 97-108.
  24. Isbaex C., Coelho A.M. (2021): The potential of Sentinel-2 satellite images for land-cover/land-use and forest biomass estimation: A review. In: Forest Biomass: From Trees to Energy. London, IntechOpen: 1-24. Go to original source...
  25. Jallat H., Khokhar M.F., Kudus K.A., Nazre M., Saqib N.U., Tahir U., Khan W.R. (2021): Monitoring carbon stock and land-use change in 5000-year-old juniper forest stand of ziarat, Balochistan, through a synergistic approach. Forests, 12: 1-15. Go to original source...
  26. Kasischke E.S., Kane E.S., Genet H., Turetsky M.R., O'Donnell J.A., Hoy E., Barrett K., Baltzer J.L. (2014): A geographic perspective on factors controlling post-fire succession in boreal black spruce forests in Western North America. In: AGU Fall Meeting Abstracts, San Francisco, Dec 15-19, 2014: B31D-0038.
  27. Kaufman Y.J., Tanre D. (1992): Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30: 261-270. Go to original source...
  28. Khan K., Iqbal J., Ali A., Khan S.N. (2020): Assessment of Sentinel-2-derived vegetation indices for the estimation of aboveground biomass/carbon stock, temporal deforestation and carbon emissions estimation in the moist temperate forests of Pakistan. Applied Ecology and Environmental Research, 18: 783-815. Go to original source...
  29. Khan I.A., Khan W.R., Ali A., Nazre M. (2021a): Assessment of above-ground biomass in Pakistan forest ecosystem's carbon pool: A review. Forests, 12: 586. Go to original source...
  30. Khan R.W.A., Shaheen H., Awan S.N. (2021b): Biomass and soil carbon stocks in relation to the structure and composition of chir Pine dominated forests in the lesser Himalayan foothills of Kashmir. Carbon Management, 12: 429-437. Go to original source...
  31. Khati U., Singh G., Ferro-Famil L. (2017): Analysis of seasonal effects on forest parameter estimation of Indian deciduous forest using TerraSAR-X PolInSAR acquisitions. Remote Sensing Environment, 199: 265-276. Go to original source...
  32. Kumar D., Shekhar S. (2015): Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing. Ecotoxicology and Environmental Safety, 121: 39-44. Go to original source... Go to PubMed...
  33. Kumar L., Mutanga O. (2017): Remote sensing of aboveground biomass. Remote Sensing, 9: 935. Go to original source...
  34. Kyere-Boateng R., Marek M.V. (2021): Analysis of the social-ecological causes of deforestation and forest degradation in Ghana: Application of the DPSIR framework. Forests, 12: 409. Go to original source...
  35. Lamlom S., Savidge R. (2003): A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25: 381-388. Go to original source...
  36. Malhi Y., Baker T.R., Phillips O.L., Almeida S., Alvarez E., Arroyo L., Chave J., Czimczik C.I., Di Fiore A., Higuchi N., Killeen T.J., Laurance S.G., Laurance W.F., Lewis S.L., Montoya L.M.M., Monteaguda A., Neill D.A., Vargas P.N., Patiño S., Pitman N.A.C., Quesada C.A., Salomão R., Silva J.N.M., Lezama A.T., Martínez R.V., Terborgh J., Vinceti B., Lloyd J. (2004): The aboveground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10: 563-591. Go to original source...
  37. Musthafa M., Singh G. (2022): Improving forest above-ground biomass retrieval using multi-sensor L-and C-Band SAR data and multi-temporal spaceborne LiDAR data. Frontiers in Forests and Global Change, 5: 14. Go to original source...
  38. Musthafa M., Khati U., Singh G. (2020): Sensitivity of PolSAR decomposition to forest disturbance and regrowth dynamics in a managed forest. Advances in Space Research, 66: 1863-1875. Go to original source...
  39. Narine L.L., Popescu S., Neuenschwander A., Zhou T., Srinivasan S., Harbeck K. (2019): Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sensing of Environment, 224: 1-11. Go to original source...
  40. Nhangumbe M., Nascetti A., Ban Y. (2023): Multi-Temporal Sentinel-1 SAR and Sentinel-2 MSI Data for Flood Mapping and Damage Assessment in Mozambique. ISPRS International Journal of Geo-Information, 12: 53. Go to original source...
  41. Nizami S.M. (2012): The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. Journal of Forestry Research, 23: 377-384. Go to original source...
  42. Nizami S.M., Mirza S.N., Livesley S., Arndt S., Fox J.C., Khan I.A., Mahmood T. (2009): Estimating carbon stocks in sub-tropical pine (Pinus roxburghii) forests of Pakistan. Pakistan Journal of Agricultural Sciences, 46: 266-270.
  43. Nuthammachot N., Phairuang W., Wicaksono P., Sayektiningsih T. (2018): Estimating aboveground biomass on private forest using Sentinel-2 imagery. Journal of Sensors, 2018: 1-11. Go to original source...
  44. Nyamari N., Cabral P. (2021): Impact of land cover changes on carbon stock trends in Kenya for spatial implementation of REDD+ policy. Applied Geography, 133: 102479. Go to original source...
  45. Pandit S., Tsuyuki S., Dube T. (2018): Estimating aboveground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel 2 data. Remote Sensing, 10: 601. Go to original source...
  46. Pant H., Tewari A. (2020): Green sequestration potential of chir pine forests located in Kumaun Himalaya. Forest Products Journal, 70: 64-71. Go to original source...
  47. Pearson T.R.H., Brown S.L., Birdsey R.A. (2007): Measurement Guidelines for the Sequestration of Forest Carbon. Vol. 18. Newtown Square, US Department of Agriculture, Forest Service, Northern Research Station: 42. Go to original source...
  48. Qureshi A., Badola R., Hussain S.A. (2012): A review of protocols used for assessment of carbon stock in forested landscapes. Environmental Science & Policy, 16: 81-89. Go to original source...
  49. Rahman S.U., Ullah Z., Ali A., Ahmad M., Sher H., Shinwari Z.K., Nazir A. (2022): Ethnoecological knowledge of wild fodder plant resources of district buner Pakistan. Pakistan Journal of Botany, 54: 645-652. Go to original source...
  50. Raihan A., Begum R.A., Mohd Said M.N., Abdullah S.M.S. (2019): A review of emission reduction potential and cost savings through forest carbon sequestration. Asian Journal of Water, Environment and Pollution, 16: 1-7. Go to original source...
  51. Ravindranath N.H., Ostwald M. (2008): Methods for estimating aboveground biomass. In: Carbon Inventory Methods. Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects. Dordrecht, Springer: 113-147. Go to original source...
  52. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. (1973): Monitoring vegetation systems in the Great Plains with ERTS. Available at: https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf.
  53. Satyal P., Paudel P., Raut J., Deo A., Dosoky N.S., Setzer W.N. (2013): Volatile constituents of Pinus roxburghii from Nepal. Pharmacognosy Research, 5: 43-48. Go to original source... Go to PubMed...
  54. Seidel D., Fleck S., Leuschner C., Hammett T. (2011): Review of ground-based methods to measure the distribution of biomass in forest canopies. Annals of Forest Science, 68: 225-244. Go to original source...
  55. Shaheen H., Khan R.W.A., Hussain K., Ullah T.S., Nasir M., Mehmood A. (2016): Carbon stocks assessment in subtropical forest types of Kashmir Himalayas. Pakistan Journal of Botany, 48: 2351-2357.
  56. Sharma K.P., Bhatta S.P., Khatri G.B., Pajiyar A., Joshi D.K. (2020): Estimation of carbon stock in the chir pine (Pinus roxburghii Sarg.) plantation forest of Kathmandu Valley, Central Nepal. Journal of Forest and Environmental Science, 36: 37-46.
  57. Sheikh M.A., Kumar S., Kumar M. (2012): Above and below ground organic carbon stocks in a sub-tropical Pinus roxburghii Sargent forest of the Garhwal Himalayas. Forestry Studies in China, 14: 205-209. Go to original source...
  58. Shoko C., Mutanga O. (2017): Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 32-40. Go to original source...
  59. Siddiq Z., Hayyat M.U., Khan A.U., Mahmood R., Shahzad L., Ghaffar R., Cao K.F. (2021): Models to estimate the above and below ground carbon stocks from a subtropical scrub forest of Pakistan. Global Ecology and Conservation, 27: e01539. Go to original source...
  60. Steininger M. (2000): Satellite estimation of tropical secondary forest aboveground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing, 21: 1139-1157. Go to original source...
  61. Su H., Shen W., Wang J., Ali A., Li M. (2020): Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Forest Ecosystems, 7: 64. Go to original source...
  62. Sun X., Guicai L., Meng W., Zemeng F. (2019): Analyzing the uncertainty of estimating forest aboveground biomass using optical imagery and space-borne LiDAR. Remote Sensing, 11: 722. Go to original source...
  63. Thammanu S., Han H., Marod D., Srichaichana J., Chung J. (2021): Aboveground carbon stock and REDD+ opportunities of community-managed forests in northern Thailand. PLoS ONE, 16: e0256005. Go to original source... Go to PubMed...
  64. Tucker C.J. (1979): Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8: 127-150. Go to original source...
  65. Vafaei S., Soosani J., Adeli K., Fadaei H., Naghavi H., Pham T.D., Tien Bui D. (2018): Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10: 172. Go to original source...
  66. Wang Y., Woodcock C.E., Buermann W., Stenberg P., Voipio P., Smolander H., Häme T., Tian Y, Hu J., Knyazikhin Y., Myneni R.B. (2004): Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91: 114-127. Go to original source...
  67. Wang D., Wan B., Liu J., Su Y., Guo Q., Qiu P., Wu X. (2020): Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 85: 101986. Go to original source...
  68. Wessels K.J., De Fries R.S., Dempewolf J., Anderson L.O., Hansen A.J., Powell S.L., Moran E.F. (2004): Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil. Remote Sensing of Environment, 92: 67-83. Go to original source...
  69. Zhang Y., Gu F., Liu S., Liu Y., Li C. (2013): Variations of carbon stock with forest types in subalpine region of southwestern China. Forest Ecology and Management, 300: 88-95. Go to original source...
  70. Zhang T., Su J., Liu C., Chen W.H., Liu H., Liu G. (2017): Band selection in Sentinel-2 satellite for agriculture applications. In: 23rd International Conference on Automation and Computing (ICAC). Huddersfield, Oct 26, 2017: 1-6. Go to original source...
  71. Zhang Y., Ai J., Sun Q., Li Z., Hou L., Song L., Thang G., Li L., Shao G. (2021): Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena, 196: 104872. Go to original source...
  72. Zoran M., Stefan S. (2006): Atmospheric and spectral corrections for estimating surface albedo from satellite data. Journal of Optoelectronics and Advanced Materials, 8: 247-251.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.