J. For. Sci., 2023, 69(6):254-265 | DOI: 10.17221/192/2022-JFS

Forest cover change detection using Normalized Difference Vegetation Index in the Oued Bouhamdane watershed, Algeria – A case studyOriginal Paper

Boubaker Khallef1, Rabah Zennir2
1 Department of Earth Sciences , Institute of Architecture and Earth Sciences, University Abbas Ferhat, Sétif, Algeria
2 Planning, Urban and Environmental Analysis Laboratory, Land Planning Department, Faculty of Earth Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria

The Algeria forest, particularly in the northeastern region, has undergone profound changes in recent years. The Oued Bouhamdane watershed has a great forest potential, which is threatened by several factors of natural and human origin, resulting in a decrease in forest cover. It requires adequate forest monitoring to support the sustainable forest management of this watershed, which is possible thanks to satellite imagery. The objective of this research is to study the spatiotemporal dynamics of the vegetation cover of the Oued Bouhamdane watershed between 2013 and 2022 using remote sensing data. This study is based on the use of Landsat 8 and 9 images for two dates in 2013 and 2022, and the calculation of the Normalized Difference Vegetation Index (NDVI) to identify changes in vegetation cover between 2013 and 2022. The calculation of NDVI and the realization of the vegetation change map showed a regression of the forest cover between 2013 and 2022 with a rate of –5.53% of the total of the study area with a general negative change of 28.62% of the study area. This regression is essentially linked to natural and anthropogenic factors. This work can be a valuable tool for sustainable management of the forest of this watershed; moreover, the method is also adaptable to other watersheds of the northeastern region of Algeria.

Keywords: remote sensing; GIS; indices; degradation; Landsat

Accepted: May 17, 2023; Prepublished online: June 27, 2023; Published: June 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Khallef B, Zennir R. Forest cover change detection using Normalized Difference Vegetation Index in the Oued Bouhamdane watershed, Algeria – A case study. J. For. Sci. 2023;69(6):254-265. doi: 10.17221/192/2022-JFS.
Download citation

References

  1. Alexandre S. (2020): Agriculture de précision: Qu'est-ce que l'indice NDVI? Available at: https://blog.spotifarm.fr/tour-de-plaine-spotifarm/quest-ce-que-lindice-ndvi-en-agriculture (in French)
  2. Barbache A. (2021): Etude et analyse de la végétation et de la flore des Cédraies de Belezma et de Guettiane: Diagnostic phytoécologique et essai de cartographie des indicateurs de la dégradation du couvert végétal. [PhD. Thesis.] Batna, Université de Mustapha Ben Boulaid-Batna 2. (in French)
  3. Barbache A., Beghami Y., Benmessaud H. (2019): Study and diachronic analysis of forest cover changes of Belezma-Algeria. Geographica Pannonica, 22: 234-264. Go to original source...
  4. Beck P.S., Atzberger C., Hogda K.A., Johansen B., Skidmore A.K. (2006): Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 100: 321-334. Go to original source...
  5. Bouguerra H. (2018): Quantification et modélisation des transports solides, cartographie des zones à risques d'érosion hydrique par utilisation d'un SIG: application aux bassins de Bouhamdane et Ressoul (Nord-est Algérien). [PhD. Thesis.] Tlemcen, University of Abou Bakr Belkaïd. (in French)
  6. Bouiadjra S.E.B., El Zerey W., Benabdeli K. (2011): Étude diachronique des changements du couvert végétal dans un écosystème montagneux par télédétection spatiale: Cas des monts du Tessala (Algérie occidentale). Physio-Géo, 5: 211-225. (in French) Go to original source...
  7. Congalton R.G. (1991): A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37: 35‒46. Go to original source...
  8. El Zerey W. (2014): Diachronic study of the forest cover regression in the Telagh plain (Algeria): Approach by remote sensing and GIS. Bulletin de l'Institut Scientifique, Rabat, Section Sciences de la Vie, 2014: 25-31.
  9. Ghebrezgabher M.G., Yang T., Yang X., Sereke T.E. (2016): Assessment of NDVI variations in responses to climate change in the Horn of Africa. The Egyptian Journal of Remote Sensing and Space Sciences, 23: 249-261. Go to original source...
  10. Haichour S., Benabdeli K. (2022): L'écosystème forestier algérien face aux pressions anthropiques et climatiques. Geo-Eco-Trop, 46: 109-124. (in French)
  11. Hansen M.C., Roy D.P., Lindquist E., Adusei B., Justice C.O., Altstatt A. (2008): A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment, 112: 2495-2513. Go to original source...
  12. Hegazy I.R., Kaloop M.R. (2015): Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4: 117-124. Go to original source...
  13. Khallef B., Mouchara N., Brahamia K. (2020): Mapping of water erosion using the PAP / CAR approach: Case of the Oued Bouhamdane watershed (North-East Algeria). International Journal of Innovation and Applied Studies, 29: 702-716.
  14. Khallef B., Brahamia K., Oularbi A. (2021): Study of the dynamics of vegetation cover by satellite images: Case of El Kala National Park (Algeria). Ekológia (Bratislava), 40: 212-221. Go to original source...
  15. Larsen J. (2003): Le déclin mondial du couvert forestier. VertigO - La revue électronique en sciences de l'environnement. Regards / Terrain. Available at: http://journals.openedition.org/vertigo/4858 (in French). Go to original source...
  16. Mayer N. (2022): Découvrez les 5 plus grandes forêts du monde. Available at: https://www.futura-sciences.com/planete/questions-reponses/foret-decouvrez-5-plus-grandes-forets-monde-8550/ (in French).
  17. Morton D.C., DeFries R.S., Shimabukuro Y.E., Anderson L.O., Arai E., Del Bon Espirito-Santo F., Freitas R., Morisette J. (2006): Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences, 103: 14637-14641. Go to original source... Go to PubMed...
  18. Nath B., Acharjee S. (2013): Forest cover change detection using Normalized Difference Vegetation Index (NDVI): A study of Reingkhyongkine Lake's adjoining areas, Rangamati, Bangladesh. Indian Cartographer, 33: 348-353.
  19. Perminder S., Ovais J. (2021): NDVI based assessment of land cover changes using remote sensing and GIS (A case study of Srinagar district, Kashmir). Sustainability, Agri, Food and Environmental Research, 9: 491-504. Go to original source...
  20. Rogan J., Franklin J., Roberts D.A. (2002): A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery, Remote Sensing of Environment, 80: 143-156. Go to original source...
  21. Soudani K. (2006): Corrections atmosphériques, géométriques et classification des images de télédétection sous ENVI. Travaux Dirigés en Télédétection. Available at: https://www.ese.universite-paris-saclay.fr/wp-content/uploads/2020/09/td2_teledec.pdf (in French).
  22. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. (1973): Monitoring vegetation systems in the Great Plains with ERTS. Available at: https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf
  23. USGS (2018): NDVI, the Foundation for Remote Sensing Phenology. Available at: https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology
  24. Xie Y., Zhao X., Li L., Wang H. (2010): Calculating NDVI for Landsat7-ETM data after atmospheric correction using 6S model: A case study in Zhangye City, China. In: 2010 18th International Conference on Geoinformatics, Beijing, June 18-20, 2010: 1-4. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.