J. For. Sci., 2023, 69(5):193-204 | DOI: 10.17221/13/2023-JFS

Effect of forest management on the genetic diversity of Abies hidalgensis, a threatened species with restricted distributionOriginal Paper

Elena Rosales-Islas ORCID...1, Pablo Octavio-Aguilar ORCID...1
1 Laboratory of Genetics, Biological Research Center, Autonomous University of Hidalgo State, Hidalgo, Mexico

Abies hidalgensis is an endemic species from the state of Hidalgo, Mexico, that has been registered only in nine fragmented relict populations that have a total of 1 000 individuals among them. Intensive forest management takes place in five of the populations under specific programs focused on Pinus spp. Still, it is necessary to know the impact of these activities on the genetic diversity of the threatened species, if restoration and conservation strategies are to be proposed. The aim of this work was to estimate the effect of forest management on the genetic structure of A. hidalgensis using seven nuclear molecular markers developed for A. guatemalensis (Ab07, Ab08, Ab09, Ab12, Ab15, Ab20, Ab23). The species was sampled growing under two different conditions; (i) areas under forest management and (ii) conserved areas. Two indexes of genetic diversity were evaluated, observed and expected heterozygosity. The genetic structure was determined by an analysis of molecular variance and a Bayesian assignment model. A bottleneck analysis was also carried out. The populations were found to have a common genetic base (differen­tiation coefficient FST = 0.056, number of mi­grants per generation Nm = 43), which suggests recent fragmentation of the distribution, which in turn increases the bottleneck effect in managed areas (Wilcoxon probability Wp = 0.007 and 0.016). This explains the apparently high heterozygous level (He = 0.69) and low inbreeding. Our results are important as they may be used to design strategies for management and conservation of A. hidalgensis.

Keywords: bottleneck; fir; genetic structure; genetic variation; population genetics

Received: February 4, 2023; Revised: March 24, 2023; Accepted: March 29, 2023; Prepublished online: May 19, 2023; Published: May 29, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Rosales-Islas E, Octavio-Aguilar P. Effect of forest management on the genetic diversity of Abies hidalgensis, a threatened species with restricted distribution. J. For. Sci. 2023;69(5):193-204. doi: 10.17221/13/2023-JFS.
Download citation

Supplementary files:

Download file13-2023-JFS_ESM.pdf

File size: 58.95 kB

References

  1. Aguirre-Planter E., Furnier G.R., Eguiarte L.E. (2000): Low levels of genetic variation within y high levels of genetic differentiation among populations of species of Abies from Southern Mexico and Guatemala. American Journal of Botany, 87: 362-371 Go to original source...
  2. Ahn J.Y., Lee J.W., Hong K.N. (2021): Genetic diversity and structure of Pinus densiflora Siebold & Zucc. populations in Republic of Korea based on microsatellite markers. Forests, 12: 750. Go to original source...
  3. Aldrich P.R., Hamrick J.L., Chavarriaga P., Kochert G. (1998): Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Molecular Ecology, 7: 933-944. Go to original source... Go to PubMed...
  4. Aleksiæ J.M., Schueler S., Mengl M., Geburek T. (2009): EST-SSRS developed for other Picea species amplify in Picea omorika and reveal high genetic variation in two natural populations. Belgian Journal of Botany, 142: 89-95.
  5. Aravanopoulos F.A. (2018): Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests, 9: 355. Go to original source...
  6. Awad L., Fady B., Khater C., Roig A., Cheddadi R. (2014): Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): Implications for conservation. PLoS ONE, 9: e90086. Go to original source... Go to PubMed...
  7. Bialozyt R., Ziegenhagen B., Petit R.J. (2006): Contrasting effects of long-distance seed dispersal on genetic diversity during range expansion. Journal of Evolutionary Biology, 19: 12-20. Go to original source... Go to PubMed...
  8. Cobo-Simón I., Méndez-Cea B., Jump A.S., Seco J., Gallejo F.J., Linares J.C. (2020): Understanding genetic diversity of relict forests. Linking long-term isolation legacies and current habitat fragmentation in Abies pinsapo Boiss. Forest Ecology and Management, 461: 117947. Go to original source...
  9. Conord C., Gurevitch J., Fady B. (2012): Large-scale longitudinal gradients of genetic diversity: A meta-analysis across six phyla in the Mediterranean basin. Ecology and Evolution, 2: 2600-2614. Go to original source... Go to PubMed...
  10. Cornuet J.M., Luikart G. (1996): Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144: 2001-2014. Go to original source... Go to PubMed...
  11. Cruz-Nicolás J., Villarruel-Arroyo A., Gernandt D.S., Fonseca R.M., Aguirre-Planter E., Eguiarte L.E., Jaramillo-Correa J.P. (2021): Non-adaptive evolutionary processes governed the diversification of a temperate conifer lineage after its migration into the tropics. Molecular Phylogenetics and Evolution, 160: 107125. Go to original source... Go to PubMed...
  12. Debreczy Z., Rácz I. (1995): New species and varieties of conifers from Mexico. Phytologia, 78: 217-243. Go to original source...
  13. Doyle J.J., Doyle J.L. (1987): A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.
  14. Eguiarte L.E., Souza V., Aguirre X. (2007): Ecología Molecular. Mexico City, Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: 1142. (in Spanish)
  15. Evanno G., Regnaut S., Goudet J. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14: 2611-2620. Go to original source... Go to PubMed...
  16. Falush D., Stephens M., Pritchard J.K. (2003): Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164: 1567-1587. Go to original source... Go to PubMed...
  17. García E. (1973): Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones climáticas de la república mexicana). Segunda edición. Mexico City, Universidad Nacional Autónoma de México, Instituto de Geografía: 246. (in Spanish)
  18. Gargiulo R., Saubin M., Rizzuto G., West B., Fay, M.F., Kallow S., Trivedi C. (2019): Genetic diversity in British populations of Taxus baccata L.: Is the seedbank collection representative of the genetic variation in the wild?. Biological Conservation, 233: 289-297. Go to original source...
  19. Garza J.C., Williamson E.G. (2001): Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10: 305-318. Go to original source... Go to PubMed...
  20. Gautam S., Timilsina S., Shrestha M. (2021): The effects of forest management activities on genetic diversity of forest trees. Indonesian Journal of Social and Environmental Issues, 2: 110-118. Go to original source...
  21. Godoy J.A. (2009): La genética, los marcadores moleculares y la conservación de especies. Ecosistemas, 18: 23-33. (in Spanish)
  22. González E.G. (2003): Microsatélites: Sus aplicaciones en la conservación de la biodiversidad. Graellsia, 59: 377-388. (in Spanish) Go to original source...
  23. Gordon S.P., Sloop C.M., Davis H.G., Cushman J.H. (2012): Population genetic diversity and structure of two rare vernal pool grasses in central California. Conservation Genetics, 13: 117-130. Go to original source...
  24. Hedrick P. (2005): Genetics of Populations. Sudbury, Jones and Bartlett Publishers: 737.
  25. INEGI (Instituto Nacional de Estadística y Geografía) (2008): Conjunto de datos vectoriales, escala 1 : 1 000 000. Unidades climáticas. Available at: https://www.inegi.org.mx/temas/climatologia/ (in Spanish).
  26. INEGI (Instituto Nacional de Estadística y Geografía) (2016): Anuario estadístico y geográfico de Hidalgo 2016. Available at: http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825095093.pdf (in Spanish).
  27. INEGI (Instituto Nacional de Estadística y Geografía) (2017): Anuario estadístico y geográfico de Hidalgo 2017. Available at: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2016/702825083748.pdf (in Spanish)
  28. INEGI, Instituto Nacional de Estadística y Geografía (2018): Conjunto de datos vectoriales de uso de suelo y vegetación. Escala 1 : 250 000. Serie VII. Available at: https://www.inegi.org.mx/temas/usosuelo/ (in Spanish).
  29. Jaramillo-Correa J.P., Beaulieu J., Leding F.T., Bousquet J. (2006): Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Molecular Ecology, 15: 2787-2800. Go to original source... Go to PubMed...
  30. Lavigne C., Reboud X., Lefranc M., Porcher E., Roux F., Olivieri I., Godelle B. (2001): Evolution of genetic diversity in metapopulations: Arabidopsis thaliana as an experimental model. Genetics Selection Evolution, 33: S399. Go to original source...
  31. Leding F.T., Hodgskiss P.D., Johnson D.R. (2006): Genetic diversity and seed production in Santa Lucia fir (Abies bracteata), a relict of the Miocene broadleaved evergreen forest. Conservation Genetics, 7: 383-398. Go to original source...
  32. Li Y.L., Liu J.X. (2018): STRUCTURE SELECTOR: A web based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18: 176-177. Go to original source... Go to PubMed...
  33. Li S., Gan X., Han H., Zhang X., Tian Z. (2018): Low within-population genetic diversity and high genetic differentiation among populations of the endangered plant Tetracentron sinense Oliver revealed by inter-simple sequence repeat analysis. Annals of Forest Science, 75: 74. Go to original source...
  34. Litrico I., Ronfort J., Verlaque R., Thompson J.D. (2005): Spatial structure of genetic variation and primary succession in the pioneer tree species Antirhea borbonica on La Réunion. Molecular Ecology, 14: 1575-1584. Go to original source... Go to PubMed...
  35. Lowe A.J., Cavers S., Boshier D., Breed M.F., Hollingsworth P.M. (2015): The resilience of forest fragmentation genetics - no longer a paradox - we were just looking in the wrong place. Heredity, 115: 97-99. Go to original source... Go to PubMed...
  36. Luikart G., Sherwin W.B., Steele B.M., Allendorf F.W. (1998): Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 7: 963-974. Go to original source... Go to PubMed...
  37. Mosca E., Eckert A.J., Di Pierro E.A., Rocchini D., La Porta N., Belletti P., Neale D.B. (2012): The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21: 5530-55045. Go to original source... Go to PubMed...
  38. Mosseler A., Major J.E., Rajora O.P. (2003): Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness. Theoretical and Applied Genetics, 106: 931-937. Go to original source... Go to PubMed...
  39. Medri C., Ruas P.M., Higa A.R., Murakami M., de Fátima Ruas C. (2003): Effects of forest management on the genetic diversity in a population of Araucaria angustifolia (Bert.) O. Kuntze. Silvae Genetica, 52: 202-205.
  40. Paffetti D., Travaglini D., Buonamici A., Nocentini S., Vendramin G.G., Giannini R., Vettori C. (2012): The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. Forest Ecology and Management, 284: 34-44. Go to original source...
  41. Peakall R., Smouse P.E. (2006): GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295. Go to original source...
  42. Pérez-López R.I., González-Espinosa M., Ramírez-Marcial N., Toledo-Aceves T. (2020): Efectos del "Método de Desarrollo Silvícola" sobre la diversidad arbórea en bosques húmedos de montaña del norte de Chiapas, México. Revista Mexicana de Biodiversidad, 91: e913326. (in Spanish) Go to original source...
  43. Phuong Thuy M.T., Thu Ha T.T., Quang T.H. (2020): Analysis of genetic diversity in Pa Co pine (Pinus kwangtungensis Chun ex Tsiang) using RAPD and ISSR markers. Vietnam Journal of Science, Technology and Engineering, 62: 62-68. Go to original source...
  44. Poelchau M.F., Hamrick J.L. (2013): Comparative phylogeography of three common Neotropical tree species. Journal of Biogeography, 40: 618-631. Go to original source...
  45. Pritchard J.K., Stephens M., Donnelly P. (2000): Inference of population structure using multilocus genotype data. Genetics, 155: 945-959. Go to original source... Go to PubMed...
  46. Rasmussen K.K., Andersen U.S., Frauenfelder N., Kollmann J. (2008): Microsatellite markers for the endangered fir Abies guatemalensis (Pinaceae). Molecular Ecology Resources, 8: 1307-1309. Go to original source... Go to PubMed...
  47. Rasmussen K.K., Strandby U., Kollmann J. (2010): High genetic diversity within but limited differentiation among populations of the vulnerable Guatemalan fir. Journal of Tropical Forest Science, 22: 247-259.
  48. Rosales-Islas E., Barrera-Tello D., Sánchez-González A., Galván-Hernández D.M., Hernández-León S., Octavio-Aguilar P. (2023): Morphological and genetical characterization of Abies' populations in Hidalgo, México: importance of the taxonomical identity to the harvesting. Botanical Sciences, 100: 417-434. Go to original source...
  49. Rungis D.E., Lībiete Z., Korica A., Katreviès J., Jansons A., Veinberga I., Jansons J. (2019): Genetic diversity and differentiation of even-aged Norway spruce stands in Latvia. Baltic Forestry, 25: 45-51. Go to original source...
  50. Sánchez-Coello N.G., Luna-Rodríguez M., Vázquez-Torres M., Sánchez-Velásquez L.R., Santana-Buzzy N., Octavio-Aguilar P., Iglesias-Andreu L.G. (2012): Optimización de un protocolo del aislamiento del ADN y de un sistema de amplificación ISSR-PCR para Ceratozamia mexicana Brongn. (Zamiaceae). Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18: 123-133. (in Spanish) Go to original source...
  51. SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2010): NOM-059-SEMARNAT-2010, Protección ambiental, Especies nativas de México de flora y fauna silvestres, Categorías de Riesgo y especificaciones para su inclusión, exclusión o cambio - Lista de especies en riesgo. México, Diario Oficial de la Federación. Available at: https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-059-semarnat-2010 (in Spanish)
  52. Spencer C.C., Neigel J.E., Leberg P.L. (2000): Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular Ecology, 9: 1517-1528. Go to original source... Go to PubMed...
  53. Stojniæ S., Avramidou E.V., Fussi B., Westergren M., Orloviæ S., Matoviæ B., Trudiæ B., Kraigher H., Aravanopoulos F.A., Konnert M. (2019): Assessment of genetic diversity and population genetic structure of norway spruce (Picea abies (L.) Karsten) at its southern lineage in Europe. Implications for conservation of forest genetic resources. Forests, 10: 258. Go to original source...
  54. Szczeciñska M., Sramko G., Wo³osz K., Sawicki J. (2016): Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill in East Central Europe. PLoS ONE, 11: e0151730. Go to original source... Go to PubMed...
  55. Tang S., Dai W., Li M., Zhang Y., Geng Y., Wang L., Zhong Y. (2008): Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica, 133: 21-30. Go to original source... Go to PubMed...
  56. Tong Y.W., Lewis B.J., Zhou W.M., Mao C.R., Wang Y., Zhou L., Yu D.P., Dai L.M., Qi L. (2020): Genetic diversity and population structure of natural Pinus koraiensis populations. Forests, 11: 39. Go to original source...
  57. Vendramin G.G., Michelozzi M., Lelli L., Tognetti R. (1995): Genetic variation in Abies nebrodensis: A case study for a highly endangered species. Forest Genetics, 2: 171-175.
  58. Vranckx G., Jacquemyn H., Muys B., Honnay O. (2012): Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conservation Biology, 26: 228-237. Go to original source... Go to PubMed...
  59. Wiberg R.A.W., Scobie A.R., A'Hara S.W., Ennos R.A., Cottrell J.E. (2016): The genetic consequences of long term habitat fragmentation on a self-incompatible clonal plant, Linnaea borealis L. Biological Conservation, 201: 405-413. Go to original source...
  60. Wright S. (1951): The genetical structure of populations. Annals Eugenesic, 15: 323-354. Go to original source... Go to PubMed...
  61. Wu F.Q., Shen S.K., Zhang X.J., Wang Y.H., Sun W.B. (2015): Genetic diversity and population structure of an extremely endangered species: The world's largest Rhododendron. AoB PLANTS, 7: plu082. Go to original source...
  62. Wyatt G.E., Hamrick J.L., Trapnell D.W. (2021): The role of anthropogenic dispersal in shaping the distribution and genetic composition of a widespread North American tree species. Ecology and Evolution, 11: 11515-11532. Go to original source... Go to PubMed...
  63. Young A., Boyle T., Brown T. (1996): The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution, 11: 413-418. Go to original source... Go to PubMed...
  64. Zhang X., Shi M.M., Shen D.W., Chen X.Y. (2012). Habitat loss other than fragmentation per se decreased nuclear and chloroplast genetic diversity in a monoecious tree. PLoS ONE, 7: e39146. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.