J. For. Sci., 2023, 69(4):127-143 | DOI: 10.17221/1/2023-JFS
Synergism of plant microbe interactions for remediation of potentially toxic elementsReview
- Forest Pathology Section, Forest Protection Division, Forest Research Institute (Indian Council of Forestry Research & Education, Autonomous Council under Ministry of Environment & Forests, Government of India), Dehradun, Uttarakhand, India
Industrialization and urbanization are important for economic development which makes the human life easy by providing different job opportunities, increasing the production level of cheaper goods and standard of living. Despite its many positive effects, industrialization has had a negative impact on the natural ecosystem through environmental pollution. It is responsible for a greater input of potentially toxic and non-toxic substances into essential environmental components such as air, soil and water. Continuous industrialization has resulted in significant environmental problems due to the release of pollutants and extremely difficult treatment of contaminated areas. This review focuses on the recent literature dealing with the role of Plant Growth Promoting Microbes (PGPMs), i.e. bacteria and Arbuscular mycorrhizal Fungi (AMF) in the remediation of polluted sites.
Keywords: detoxification; hyperaccumulator plants; plant growth promoting rhizobacteria; mycorrhiza; risk elements; synergistic interactions
Received: January 3, 2023; Revised: March 17, 2023; Accepted: March 22, 2023; Published: April 25, 2023 Show citation
References
- Achal V., Pan X., Fu Q., Zhang D. (2012): Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201: 178-184.
Go to original source...
Go to PubMed...
- Adeyemi N.O., Atayese M.O., Sakariyawo O.S., Azeez J.O., Olubode A., Ridwan M., Adebayo R., Adeoye S. (2021a): A growth and phosphorus uptake of soybean (Glycine max L.) in response to arbuscular mycorrhizal fungus Rhizophagus intraradices inoculation in heavy metal-contaminated soils. Soil and Sediment Contamination: An International Journal, 30: 698-713.
Go to original source...
- Adeyemi N.O., Atayese M.O., Sakariyawo O.S., Azeez J.O., Ridwan M. (2021b): Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil. Journal of Plant Nutrition, 44: 1633-1648.
Go to original source...
- Ali H., Naseer M., Sajad M.A. (2012): Phytoremediation of heavy metals by Trifolium alexandrinum. International Journal of Environmental Sciences, 2: 1459-1469.
Go to original source...
- Ali H., Khan E., Sajad M.A. (2013): Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91: 869-881.
Go to original source...
Go to PubMed...
- Ali M.A., Naveed M., Mustafa A., Abbas A. (2017): The good, the bad, and the ugly of rhizosphere microbiome. In: Kumar V., Kumar M., Sharma S., Prasad R. (eds): Probiotics and Plant Health. Singapore, Springer: 253-290.
Go to original source...
- Ali J., Mahmood T., Hayat K., Afridi M.S., Ali F., Chaudhary H.J. (2018): Phytoextraction of Cr by maize (Zea mays L.): the role of plant growth promoting endophyte and citric acid under polluted soil. Archives of Environmental Protection, 44: 73-82.
- Ali M.H., Sattar M.T., Khan M.I., Naveed M., Rafique M., Alamri S., Siddiqui M.H. (2020): Enhanced growth of mungbean and remediation of petroleum hydrocarbons by Enterobacter sp.MN17 and biochar addition in diesel contaminated soil. Applied Sciences, 10: 8548.
Go to original source...
- Alkorta I., Hernandez-Allica J., Becerril J.M., Amezaga I., Albizu I., Garbisu C. (2004): Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Biotechnology, 3: 71-90.
Go to original source...
- Alloway B.J. (2008): Micronutrients and crop production: An introduction. In: Alloway B.J. (ed.): Micronutrient Deficiencies in Global Crop Production. Dordrecht, Springer: 1-39.
Go to original source...
- Alori E.T., Fawole O.B. (2012): Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. Journal of Agricultural Science, 4: 246-252.
Go to original source...
- Azubuike C.C., Chikere C.B., Okpokwasili G.C. (2016): Bioremediation techniques - Classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32: 180.
Go to original source...
Go to PubMed...
- Banuelos G.S., Cardon G., Mackey B., Ben-Asher J., Wu L., Beuselinck P., Akohoue S., Zambrzuski S. (1993): Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. Journal of Environment Quality, 22: 786-792.
Go to original source...
- Berti W.R., Cunningham S.D. (2000): Phytostabilization of metals. In: Raskin I., Ensley B.D. (eds): Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. New York, Wiley: 71-88.
- Bharti N., Pandey S.S., Barnawal D., Patel V.K., Kalra A. (2016): Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 6: 34768.
Go to original source...
Go to PubMed...
- Bhattacharyya P.N., Jha D.K. (2012): Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327-1350.
Go to original source...
Go to PubMed...
- Brundrett M.C. (2002): Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154: 275-304.
Go to original source...
Go to PubMed...
- Cazorla F.M., Romero D., Perez-Garcia A., Lugtenberg B.J.J., Vicente A.D., Bloemberg G. (2007): Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 103: 1950-1959.
Go to original source...
Go to PubMed...
- Chakraborty S., Das S., Banerjee S., Mukherjee S., Ganguli A., Mondal S. (2021): Heavy metals bio-removal potential of the isolated Klebsiella sp. TIU20 strain which improves growth of economic crop plant (Vigna radiata L.) under heavy metals stress by exhibiting plant growth promoting and protecting traits. Biocatalysis and Agricultural Biotechnology, 38: 102204.
Go to original source...
- Cheng X., Sheng L., Peng S., Thorley E., Cao H., Li K. (2022): Integrated mechanism of heavy metal bioremediation from soil to rice (Oryza sativa L.) mediated by Enterococcus faecium. Plant Growth Regulation, 97: 523-535.
Go to original source...
- Chibuike G.U., Obiora S.C. (2014): Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014: 752708.
Go to original source...
- Cornejo P., Meier S., García S., Ferrol N., Durán P., Borie F., Seguel A. (2017): Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensis. Journal of Soil Science and Plant Nutrition, 17: 14-21.
Go to original source...
- Cui G., Ai S., Chen K., Wang X. (2019): Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicology and Environmental Safety, 171: 231-239.
Go to original source...
Go to PubMed...
- Dhanwal P., Kumar A., Dudeja S., Chhokar V., Beniwal V. (2017): Recent advances in phytoremediation technology. In: Kumar R., Sharma A.K., Ahluwalia S.S. (eds): Advances in Environmental Biotechnology. Singapore, Springer: 227-241.
Go to original source...
- Di Toppi L.S., Gabbrielli R. (1999): Response to cadmium in higher plants. Environmental and Experimental Botany, 41: 105-130.
Go to original source...
- Drewnowska M., Hanc A., Baralkiewicz D., Falandysz J. (2017): Pickling of chanterelle Cantharellus cibarius mushrooms highly reduce cadmium contamination. Environmental Science and Pollution Research, 24: 21733-21738.
Go to original source...
Go to PubMed...
- Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. (2015): Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015: 756120.
Go to original source...
Go to PubMed...
- Fomina M., Bowen A.D., Charnock J.M., Podgorsky V.S., Gadd G.M. (2017): Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources. Environmental Microbiology, 19: 1310-1321.
Go to original source...
Go to PubMed...
- Friedlova M. (2010): The influence of heavy metals on soil biological and chemical properties. Soil and Water Research, 5: 21-27.
Go to original source...
- Ghosh M., Singh S.P. (2005): A review on phytoremediation of heavy metals and utilization of it's by products. Asian Journal of Energy and Environment, 6: 214-231.
- Glick B.R. (2014): Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169: 30-39.
Go to original source...
Go to PubMed...
- Gohre V., Paszkowski U. (2006): Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223: 1115-1122.
Go to original source...
Go to PubMed...
- Gupta A., Joia J., Sood A., Sood R., Sidhu C., Kaur G. (2016): Microbes as potential tool for remediation of heavy metals: a review. Journal of Microbial and Biochemical Technology, 8: 364-372.
Go to original source...
- Gupta P., Diwan B. (2017): Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13: 58-71.
Go to original source...
Go to PubMed...
- Gupta P., Kumar V., Usmani Z., Rani R., Chandra A., Gupta V.K. (2020): Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp.CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere, 240: 124944.
Go to original source...
Go to PubMed...
- Haider F.U., Ejaz M., Cheema S.A., Khan M.I., Zhao B., Liqun C., Salim M.A., Naveed M., Khan N., Nunez-Delgado A., Mustafa A. (2021): Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environmental Research, 197: 111031.
Go to original source...
Go to PubMed...
- Hashem A., AbdAllah E.F., Alqarawi A.A., Egamberdieva D. (2016): Bioremediation of adverse impact of cadmium toxicity on Cassia italica (Mill.) by arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences, 23: 39-47.
Go to original source...
Go to PubMed...
- Herzig R., Nehnevajova E., Pfistner C., Schwitzguebel J.P., Ricci A., Keller C. (2014): Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: Results of five-and one-year field-scale experiments in Switzerland. International Journal of Phytoremediation, 16: 735-754.
Go to original source...
Go to PubMed...
- Hossain M.M., Sultana F. (2020): Application and mechanisms of Plant Growth Promoting Fungi (PGPF) for phytostimulation. In: Kumar Das S. (ed.): Organic Agriculture. Rijeka, InTech: 1-31.
- Hristozkova M., Geneva M., Stancheva I., Boychinova M., Djonova E. (2016): Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 101: 57-63.
Go to original source...
- Huang X.D., El-Alaw Y.S., Gurska I.J., Glick B.R., Greenberg B.M. (2005): A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81: 139-147.
Go to original source...
- Hussain A., Zahir Z.A., Asghar H.N., Ahmad M., Jamil M., Naveed M., Zaman Akhtar M.F.U. (2018): Zinc solubilizing bacteria for zinc biofortification in cereals: A step toward sustainable nutritional security. In: Meena V.S. (ed.): Role of Rhizospheric Microbes in Soil, Singapore, Springer: 203-227.
Go to original source...
- Ianeva O.D. (2009): Mechanisms of bacteria resistance to heavy metals. Microbiological Journal, 71: 54-65.
- Iskandar N.L., Zainudin N.A.I.M., Tan S.G. (2011): Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23: 824-830.
Go to original source...
Go to PubMed...
- Jacob J.M., Karthik C., Saratale R.G., Kumar S.S., Prabakar D., Kadirvelu K., Pugazhendhi A. (2018): Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of Environmental Management, 217: 56-70.
Go to original source...
Go to PubMed...
- Jain S., Arnepalli D.N. (2019): Biominerlisation as a remediation technique: A critical review. In: Stalin V.K., Muttharam M. (eds): Geotechnical Characterisation and Geo Environmental Engineering. Singapore, Springer: 155-162.
Go to original source...
- Jain D., Kour R., Bhojiya A.A., Meena R.H., Singh A., Mohanty S.R., Rajpurohit D., Ameta K.D. (2020): Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Scientific Reports, 10: 13865.
Go to original source...
Go to PubMed...
- Jan A.T., Azam M., Ali A., Haq Q.M.R. (2014): Prospects for exploiting bacteria for bioremediation of metal pollution. Critical Reviews in Environmental Science and Technology, 44: 519-560.
Go to original source...
- Javed M.T., Tanwir K., Akram M.S., Shahid M., Niazi N.K., Lindberg S. (2019): Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M., Prasad M.N.V., Fujita M. (eds): Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation. London, Academic Press: 495-529.
Go to original source...
- Jeyasundar P.G.S.A., Ali A., Azeem M., Li Y., Guo D., Sikdar A., Abdelrahman H., Kwon E., Antoniadis V., Mani V.M., Shaheen S.M., Rinklebe J., Zhang Z. (2021): Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. Environmental Pollution, 277: 116789.
Go to original source...
Go to PubMed...
- Jutsz A.M., Gnida A. (2015): Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41: 104-114.
Go to original source...
- Kabata-Pendias A. (1993): Behavioural properties of trace metals in soils. Applied Geochemistry, 8: 3-9.
Go to original source...
- Kabata-Pendias A., Mukherjee A.B. (2007): Trace Elements from Soil to Human. Berlin, Springer Verlag: 550.
Go to original source...
- Kaewdoung B., Sutjaritvorakul T., Gadd G.M., Whalley A.J., Sihanonth P. (2016): Heavy metal tolerance and biotransformation of toxic metal compounds by new isolates of wood rotting fungi from Thailand. Geomicrobiology Journal, 33: 283-288.
Go to original source...
- Kalayu G. (2019): Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019: 4917256.
Go to original source...
- Kanwal S., Bano A., Malik R.N. (2016): Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. African Journal of Biotechnology, 15: 872-883.
Go to original source...
- Kendrick B. (2011): Fungi: Ecological Importance and Impact on Humans. Chichester, eLS, John Wiley and Sons.
Go to original source...
- Khan A.G., Kuek C., Chaudhry T.M., Khoo C.S., Hayes W.J. (2000): Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41: 197-207.
Go to original source...
Go to PubMed...
- Khan A., Sharif M., Ali A., Shah S.N.M., Mian I.A., Wahid F., Jan B., Adnan M., Nawaz S., Ali N. (2014): Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. American Journal of Plant Sciences, 5: 1578-1586.
Go to original source...
- Kong Z.Y., Deng Z.S., Glick B.R., Wei G.H., Chou M.X. (2017): A nodule endophytic plant growth promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Annals of Microbiology, 67: 49-58.
Go to original source...
- Kotoky R., Nath S., Kumar Maheshwari D., Pandey P. (2019): Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environmental Sustainability, 2: 135-144.
Go to original source...
- Kullu B., Patra D.K., Acharya S., Pradhan C., Patra H.K. (2020): AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica - a mycorrhizal phytoremediation approach. Chemosphere, 258: 127337.
Go to original source...
Go to PubMed...
- Kumar V., Dwivedi S.K. (2021): Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environmental Science and Pollution Research, 28: 10375-10412.
Go to original source...
Go to PubMed...
- Lampis S., Santi C., Ciurli A., Andreolli M., Vallini G. (2015): Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6: 80.
Go to original source...
Go to PubMed...
- Leyval C., Turnau K., Haselwandter K. (1997): Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7: 139-153.
Go to original source...
- Ligowe I.S., Bailey E.H., Young S.D., Ander E.L., Kabambe V., Chilimba A.D., Lark R.M., Nalivata P.C. (2021): Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols. Environmental Geochemistry and Health, 43: 361-374.
Go to original source...
Go to PubMed...
- Li X., Wang Y., Pan Y., Yu H., Zhang X., Shen Y., Jiao S., Wu K., La G., Yuan Y., Zhang S. (2017): Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. Journal of Hazardous Materials, 330: 1-8.
Go to original source...
Go to PubMed...
- Liu H., Yuan M., Tan S., Yang X., Lan Z., Jiang Q., Ye Z., Jing Y. (2015): Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecology, 89: 44-49.
Go to original source...
- Lu R.R., Hu Z.H., Zhang Q.L., Li Y.Q., Lin M., Wang X.L., Wu X.N., Yang J.T., Zhang L.Q., Jing Y.X., Peng C.L. (2020): The effect of Funneliformis mosseae on the plant growth, Cd translocation andaccumulation in the new Cd hyperaccumulator Sphagneticola calendulacea. Ecotoxicology and Environmental Safety, 203: 110988.
Go to original source...
Go to PubMed...
- Ma Q.Y., Traina S.J., Logan T.J., Ryan J.A. (1993): In situ lead immobilization by apatite. Environmental Science and Technology, 27: 1803-1810.
Go to original source...
- Ma Y., Prasad M., Rajkumar M., Freitas H. (2011): Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248-258.
Go to original source...
Go to PubMed...
- Ma Y., Oliveira R.S., Freitas H., Zhang C. (2016): Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Frontiers in Plant Science, 7: 918.
Go to original source...
Go to PubMed...
- Madhaiyan M., Poonguzhali S., Sa T. (2007): Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 69: 220-228.
Go to original source...
Go to PubMed...
- Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R., Zhang Z. (2016): Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126: 111-121.
Go to original source...
Go to PubMed...
- Malekzadeh E., Alikhani H.A., Savaghebi-Firoozabadi G.R., Zarei M. (2012): Bioremediation of cadmium-contaminated soil through cultivation of maize inoculated with plant growth promoting rhizobacteria. Bioremediation Journal, 16: 204-211.
Go to original source...
- Malik R.N., Husain S.Z., Nazir I. (2010): Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany, 42: 291-301.
- Marques A.P., Rangel A.O., Castro P.M. (2009): Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39: 622-654.
Go to original source...
- Meliani A., Bensoltane A. (2016): Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. Journal of Bioremediation and Biodegradation, 7: 370.
Go to original source...
- Mench M., Lepp N., Bert V., Schwitzguebel J.P., Gawronski S.W., Schroder P., Vangronsveld J. (2010): Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10: 1039-1070.
Go to original source...
- Mesjasz-Przybyłowicz J., Nakonieczny M., Migula P., Augustyniak M., Tarnawska M., Reimold U., Koeberl C., Przybylowicz J., Elz A., Glowacka B. (2004): Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series Botanica, 46: 75-85.
- Mishra A., Malik A. (2012): Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Research, 46: 4991-4998.
Go to original source...
Go to PubMed...
- Mishra V., Gupta A., Kaur P., Singh S., Singh N., Gehlot P., Singh J. (2016): Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. International Journal of Phytoremediation, 18: 697-703.
Go to original source...
Go to PubMed...
- Mohammadzadeh A., Tavakoli M., Motesharezadeh B., Chaichi M.R. (2017): Effects of plant growth-promoting bacteria on the phytoremediation of cadmium contaminated soil by sunflower. Archives of Agronomy and Soil Science, 63: 807-816.
Go to original source...
- Mumtaz S., Streten-Joyce C., Parry D.L., McGuinness K.A., Lu P., Gibb K.S. (2013): Fungi outcompete bacteria under increased uranium concentration in culture media. Journal of Environmental Radioactivity, 120: 39-44.
Go to original source...
Go to PubMed...
- Naik M.M., Pandey A., Dubey S.K. (2012): Pseudomonas aeruginosa strain WI-1fro Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79: 129-133.
Go to original source...
Go to PubMed...
- Narendrula-Kotha R., Nkongolo K.K. (2017): Microbial response to soil liming of damaged ecosystems revealed by pyrosequencing and phospholipid fatty acid analyses. PLoS ONE, 12: e0168497.
Go to original source...
Go to PubMed...
- Nath S., Deb B., Sharma I. (2018): Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium and lead contaminated soil. International Microbiology, 21: 35-45.
Go to original source...
Go to PubMed...
- NdeddyAka R.J., Babalola O.O. (2016): Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. International Journal of Phytoremediation, 18: 200-209.
Go to original source...
Go to PubMed...
- Neagoe A., Tenea G., Cucu N., Ion S., Iordache V. (2017): Coupling Nicotiana tabacum transgenic plants with Rhizophagus irregularis for phytoremediation of heavy metal polluted areas. Revista de Chimie, 68: 789-795.
Go to original source...
- Niamat B., Naveed M., Ahmad Z., Yaseen M., Ditta A., Mustafa A., Rafique M., Bibi R., Sun N., Xu M. (2019): Calcium-enriched animal manure alleviates the adverse effects of salt stress on growth, physiology and nutrients homeostasis of Zea mays L. Plants, 8: 480.
Go to original source...
Go to PubMed...
- Pourret O., Hursthouse A. (2019): It's time to replace the term "heavy metals" with "Potentially Toxic Elements" when reporting environmental research. International Journal of Environmental Research and Public Health, 16: 4446.
Go to original source...
Go to PubMed...
- Olanrewaju O.S., Glick B.R., Babalola O.O. (2017): Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33: 197.
Go to original source...
Go to PubMed...
- Orlowska E., Godzik B., Turnau K. (2012): Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environmental Pollution, 168: 121-130.
Go to original source...
Go to PubMed...
- Ozyigit I.I., Can H., Dogan I. (2021): Phytoremediation using genetically engineered plants to remove metals: A review. Environmental Chemistry Letters, 19: 669-698.
Go to original source...
- Pandey S., Ghosh P.K., Ghosh S., De T.K., Maiti T.K. (2013): Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 51: 11-17.
Go to original source...
Go to PubMed...
- Rahman M.A., Reichman S.M., Filippis L.D., TavakolySany S.B., Hasegawa H. (2016): Phytoremediation of toxic metals in soils and wetlands: Concepts and applications. In: Hasegawa H., Rahman I.M.M., Rahman M.A. (eds): Environmental Remediation Technologies for Metal-Contaminated Soils. Tokyo, Springer: 161-195.
Go to original source...
- Rajkumar M., Nagendran R., Lee K.J., Lee W.H., Kim S.Z. (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62: 741-748.
Go to original source...
Go to PubMed...
- Ramakrishna W., Rathore P., Kumari R., Yadav R. (2020): Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Science of The Total Environment, 711: 135062.
Go to original source...
Go to PubMed...
- Rascio N., Navari-Izzo F. (2011): Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180: 169-181.
Go to original source...
Go to PubMed...
- Raskin I., Smith R.D., Salt D.E. (1997): Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8: 221-226.
Go to original source...
Go to PubMed...
- Rayu S., Karpouzas D.G., Singh B.K. (2012): Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23: 917-926.
Go to original source...
Go to PubMed...
- Rhodes C.J. (2012): Feeding and healing the world: Through regenerative agriculture and permaculture. Science Progress, 95: 345-446.
Go to original source...
Go to PubMed...
- Riaz M., Kamran M., Fang Y., Wang Q., Cao H., Yang G., Deng L., Wang Y., Zhou Y., Anastopoulos I., Wang X. (2021): Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 402: 123919.
Go to original source...
Go to PubMed...
- Saif S., Khan M.S. (2018): Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Environmental Monitoring and Assessment, 190: 290.
Go to original source...
Go to PubMed...
- Saiyad S.A., Jhala Y.K., Vyas R.V. (2015): Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. International Journal of Scientific and Research Publications, 5: 222-227.
- Saravana Kumar D., Vijayakumar C., Kumar N., Samiyappan R. (2007): PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 26: 556-565.
Go to original source...
- Sayin F.E., Khalvati M.A., Erdinçler A. (2019): Effects of sewage sludge application and arbuscular mycorrhizal fungi (G. mosseae and G. intraradices) interactions on the heavy metal phytoremediation in chrome mine tailings. Frontiers in Plant Science, 112: 217-224.
- Seth C.S. (2012): A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Botanical Review, 78: 32-62.
Go to original source...
- Sharma R., Yeh K.C. (2020): The dual benefit of a dominant mutation in Arabidopsis IRON DEFICIENCY TOLERANT1 for iron biofortification and heavy metal phytoremediation. Plant Biotechnology Journal, 18: 1200-1210.
Go to original source...
Go to PubMed...
- Shin M.N., Shim J., You Y., Myung H., Bang K.S., Cho M., Kamala-Kannan S., Oh B.T. (2012): Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. Journal of Hazardous Materials, 199: 314-320.
Go to original source...
Go to PubMed...
- Shreya D., Jinal H.N., Kartik V.P., Amaresan N. (2020): Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Archives of Microbiology, 202: 887-894.
Go to original source...
Go to PubMed...
- Singh G., Pankaj U., Chand S., Verma R.K. (2019): Arbuscular mycorrhizal fungi assisted phytoextraction of toxic metals by Zea mays L. from tannery sludge. Soil and Sediment Contamination: An International Journal, 28: 729-746.
Go to original source...
- Singh R., Gautam N., Mishra A., Gupta R. (2011): Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43: 246-253.
Go to original source...
Go to PubMed...
- Sobariu D.L., Fertu D.I.T., Diaconu M., Pavel L.V., Hlihor R.M., Dragoi E.N., Curteanu S., Lenz M., Corvini P.F.X., Gavrilescu M. (2017): Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnology, 39: 125-134.
Go to original source...
Go to PubMed...
- Sohail M.I., Rehman M.Z., Aziz T., Akmal F., Azhar M., Nadeem F., Aslam M., Siddiqui A., Khalid M.A. (2022): Iron bio-fortification and heavy metal/(loid)s contamination in cereals: Successes, issues, and challenges. Crop and Pasture Science, 73: 877-895.
Go to original source...
- Strong P.J., Burgess J.E. (2008): Treatment methods for wine-related and distillery wastewaters: A review. Bioremediation Journal, 12: 70-87.
Go to original source...
- Tabrizi L., Mohammadi S., Delshad M., Moteshare Zadeh B. (2015): Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. International Journal of Phytoremediation, 17: 1244-1252.
Go to original source...
Go to PubMed...
- Tangahu B.V., Sheikh Abdullah S.R., Basri H., Idris M., Anuar N., Mukhlisin M. (2011): A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011: 939161.
Go to original source...
- Thomas F., Cebron A. (2016): Short-term rhizosphere effect on available carbon sources, phenanthrene degradation, and active microbiome in an aged-contaminated industrial soil. Frontiers in Microbiology, 7: 92.
Go to original source...
Go to PubMed...
- Tome F.V., Rodriguez P.B., Lozano J. (2008): Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Science of the Total Environment, 393: 351-357.
Go to original source...
Go to PubMed...
- Umar W., Ayub M.A., Rehman M.Z.U., Ahmad H.R., Farooqi Z.U.R., Shahzad A., Rehman U., Mustafa A., Nadeem M. (2020): Nitrogen and phosphorus use efficiency in agroecosystems. In: Kumar S., Meena R.S., Resources Use Efficiency in Agriculture. Singapore, Springer: 213-257.
Go to original source...
- Upadhayay V.K., Singh A.V., Khan A. (2022): Cross talk between zinc-solubilizing bacteria and plants: A short tale of bacterial-assisted zinc biofortification. Frontiers in Soil Science, 1: 788170.
Go to original source...
- Van der Ent A., Baker A.J., Reeves R.D., Pollard A.J., Schat H. (2013): Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362: 319-334.
Go to original source...
- Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., Thewys T., Vassilev A., Meers E., Nehnevajova E., van der Lelie D., Mench M. (2009): Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16: 765-794.
Go to original source...
Go to PubMed...
- Visoottiviseth P., Francesconi K., Sridokchan W. (2002): The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118: 453-461.
Go to original source...
Go to PubMed...
- Wang J., Chen C. (2009): Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27: 195-226.
Go to original source...
Go to PubMed...
- Wang Y., Huang J., Gao Y. (2012): Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS ONE, 7: e48669.
Go to original source...
Go to PubMed...
- Wani P.A., Khan M.S. (2010): Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48: 3262-3267.
Go to original source...
Go to PubMed...
- WeiXie L., Yang R., Liu B., Lei N., Peng S., Li J., Tong J., Deng R., Li J. (2022): Effects of Pb, Cd resistant bacterium Pantoea sp. on growth, heavy metal uptake and bacterial communities in oligotrophic growth substrates of Lolium multiflorum Lam. Environmental Science and Pollution Research, 29: 50742-50754.
Go to original source...
Go to PubMed...
- Wenzel W.W. (2009): Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321: 385-408.
Go to original source...
- Wuana R.A., Okieimen F.E. (2011): Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011: 402647.
Go to original source...
- Xie H., Chen J., Qiao Y., Xu K., Lin Z., Tian S. (2022): Biofortification technology for the remediation of cadmium-contaminated farmland by the hyperaccumulator Sedum alfredii under crop rotation and relay cropping mode. Toxics, 10: 691.
Go to original source...
Go to PubMed...
- Xu S., Xing Y., Liu S., Huang Q., Chen W. (2019a): Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Applied Microbiology and Biotechnology, 103: 3887-3897.
Go to original source...
Go to PubMed...
- Xu Z., Wu Y., Xiao Z., Ban Y., Belvett N. (2019b): Positive effects of Funneliformis mosseae inoculation on reed seedlings under water and TiO2 nanoparticles stresses. World Journal of Microbiology and Biotechnology, 35: 81.
Go to original source...
Go to PubMed...
- Yang T., Chen M.L., Wang J.H. (2015): Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends in Analytical Chemistry, 66: 90-102.
Go to original source...
- Yasin M., El-Mehdawi A.F., Anwar A., Pilon-Smits E.A., Faisal M. (2015): Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) - Applications in phytoremediation and biofortification. International Journal of Phytoremediation, 17: 341-347.
Go to original source...
Go to PubMed...
- Yin X., Yuan L., Liu Y., Lin Z. (2012): Phytoremediation and biofortification: Two sides of one coin. In: Yin X., Yuan L. (eds): Phytoremediation and Biofortification. Dordrecht, Springer: 1-6.
Go to original source...
- Zaefarian F., Rezvani M., Ardakani M.R., Rejali F., Miransari M. (2013): Impact of mycorrhizae formation on the phosphorus and heavy-metal uptake of Alfalfa. Communications in Soil Science and Plant Analysis, 44: 1340-1352.
Go to original source...
- Zainab N., Khan A.A., Azeem M.A., Ali B., Wang T., Shi F., Alghanem S.M., Hussain Munis M.F., Hashem M., Alamri S., Abdel Latef A.A.H., Ali O.M., Soliman M.H., Chaudhary H.J. (2021): PGPR-mediated plant growth attributes and metal extraction ability of Sesbania sesban L. in industrially contaminated soils. Agronomy, 11: 1820.
Go to original source...
- Zhan F., Li B., Jiang M., Li T., He Y., Li Y., Wang Y. (2019): Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermuda grass [Cynodon dactylon (L.) Pers.] grown in a lead-zinc mine wasteland. International Journal of Phytoremediation, 21: 849-856.
Go to original source...
Go to PubMed...
- Zhuo F., Zhang X.F., Lei L.L., Yan T.X., Lu R.R., Hu Z.H., Jing Y.X. (2020): The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. International Journal of Phytoremediation, 22: 1009-1018.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.