J. For. Sci., 2023, 69(3):124-126 | DOI: 10.17221/189/2022-JFS

Use of bioreactors RITA® in the propagation of Pinus patula Schiede ex Schltdl. & Cham.Short Communication

Arturo Alonso Armas Silva ORCID...1, Lourdes Georgina Iglesias Andreu ORCID...1, Marco Antonio Ramírez Mosqueda2
1 Institute of Biotechnology and Applied Ecology (INBIOTECA), Veracruz University, Veracruz, Mexico
2 Faculty of Biological and Agricultural Sciences, Veracruz University, Veracruz, Mexico


The objective of the present work was to evaluate the efficacy of use of the RITA® temporary immersion system in the large-scale propagation of P. patula. The effects of four concentrations (0.00 µM, 4.50 µM, 9.00 µM, and 13.51 µM) of 6-benzylaminopurine (BAP) on 10 hypocotyl explants were studied using a completely randomised design with three replicates per treatment. Five hypocotyl explants were grown in 250 mL RITA® containers of Woody Plant Culture Medium (WPM) supplemented with 20 g·L–1 sucrose and 10 mg·L–1 vitamins from Murashige and Skoog (MS) culture medium. The frequency of immersion of the explants into the culture medium was 2 min every 8 hours. The number of adventitious buds and calli formed, as well as shoot growth, were evaluated after 6 weeks of in vitro culture. The 4.50 µM concentration of BAP was the best treatment for shoot production (5 shoots per plant) and shoot length (1.32 cm). These results could help the widespread vegetative propagation of this important forest species.

Keywords: conifers; in vitro; micropropagation; temporary immersion system; recipient for automated temporary immersion

Received: December 16, 2022; Accepted: March 7, 2023; Published: March 20, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Alonso Armas Silva A, Iglesias Andreu LG, Ramírez Mosqueda MA. Use of bioreactors RITA® in the propagation of Pinus patula Schiede ex Schltdl. & Cham. J. For. Sci. 2023;69(3):124-126. doi: 10.17221/189/2022-JFS.
Download citation

References

  1. Arencibia A.D., Gómez A., Poblete M., Vergara C. (2017): High-performance micropropagation of dendroenergetic poplar hybrids in photo mixotrophic Temporary Immersion Bioreactors (TIBs). Industrial Crops and Products, 96: 102-109. Go to original source...
  2. Bello-Bello J., Iglesias-Andreu L., Sánchez-Velasquez L. (2012): In vitro regeneration of Pinus brutia Ten. var. eldarica (Medw.) through organogenesis. African Journal of Biotechnology, 11: 15982-15987. Go to original source...
  3. De Diego N., Montalbán I.A., Moncaleán P. (2010): In vitro regeneration of adult Pinus sylvestris L. trees. South African Journal of Botany, 76: 158-162. Go to original source...
  4. Etienne H., Berthouly M. (2002): Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69: 215-231. Go to original source...
  5. Farjon A., Styles B.T. (1997): Pinus (Pinaceae). Flora Neotropica. New York, The New York Botanical Garden: 291.
  6. Gomes H.T., Bartos P.M.C., Balzon T.A., Scherwinski-Pereira J.E. (2016): Regeneration of somatic embryos of oil palm (Elaeis guineensis) using temporary immersion bioreactors. Industrial Crops and Products, 89: 244-249. Go to original source...
  7. Humánez A., Blasco M., Brisa C., Segura J., Arrillaga I. (2011): Thidiazuron enhances axillary shoot proliferation in juvenile explants of Mediterranean provenances of maritime pine Pinus pinaster. In Vitro Cellular and Developmental Biology - Plant, 47: 569-577. Go to original source...
  8. Leibing C., van Zonneveld M., Jarvis A., Dvorak W. (2009): Adaptation of tropical and subtropical pine plantation forestry to climate change: Realignment of Pinus patula and Pinus tecunumanii genotypes to 2020 planting site climates. Scandinavian Journal of Forest Research, 24: 483-493. Go to original source...
  9. Lloyd G., McCown B. (1981): Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings, International Plant Propagators' Society, 30: 421-427.
  10. Murashige T., Skoog F. (1962): A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Go to original source...
  11. Orwa C., Mutua A., Kindt R., Jamnadass R., Simons A. (2009): Agroforestree Database: A tree reference and selection guide. Version 4.0. Available at: https://www.worldagroforestry.org/publication/agroforestree-database-tree%20reference-and-selection-guide-version-40
  12. Ramírez-Mosqueda M.A., Iglesias-Andreu L.G., Armas-Silva A.A., Cruz-Gutiérrez E., de la Torre-Sánchez J.F., Leyva-Ovalle O.R., Galán-Páez C.M. (2019): Effect of the thin cell layer technique in the induction of somatic embryos in Pinus patula Schdl. et Cham. Journal of Forestry Research, 30: 1535-1539. Go to original source...
  13. Sarmast M.K. (2018): In vitro propagation of conifers using mature shoots. Journal of Forestry Research, 29: 565-574. Go to original source...
  14. Sul I.W., Korban S.S. (2004): Effects of salt formulation, carbon sources, cytokinins, and auxins on shoot organogenesis from cotyledons of Pinus pinea L. Plant Growth Regulation, 43: 197-205. Go to original source...
  15. Vidal N., Sánchez C. (2019): Use of bioreactor systems in the propagation of forest trees. Engineering in Life Sciences, 19: 896-915. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.