J. For. Sci., 2022, 68(12):496-508 | DOI: 10.17221/156/2022-JFS

Afforestation of agricultural land affects soil structural stability and related preconditions to resist droughtOriginal Paper

Jiří Holátko1,2, Ondřej Holubík3, Tereza Hammerschmiedt1, Jan Vopravil3,4, Antonín Kintl1,5, Martin Brtnický ORCID...1
1 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
2 Agrovýzkum Rapotín, Ltd., Rapotín, Czech Republic
3 Research Institute for Soil and Water Conservation, Prague, Czech Republic
4 Department of Land Use and Improvement, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
5 Agricultural Research, Ltd., Troubsko, Czech Republic

Afforestation is important for the EU forest management strategy. Afforestation of abandoned and marginal arable land is a favourable non-agricultural land use option for climate change mitigation. It may prevent threats of drought or erosion e.g. by affecting the water balance in soil via increased structural stability. The structural stability control in afforested soil is related to i.a. organic matter content, nutrient content, soil reaction, planted tree species prosperity, and amelioration. A four-year field small-plot experiment on afforestation was carried out with Chernozem covered with deciduous (oak), coniferous (pine) or mixed planting, amended with 3 doses (no-application, 0.5 kg×m-2, and 1.5 kg×m-2) of alginite. In 2013 and 2016, soil reaction pHH2O, mean weight diameter (MWD), organic matter content (LOI) and total organic carbon (TOC) were determined and related to the soil structural stability to evaluate the soil precondition to sustain drought twice per vegetation period (spring and autumn). Afforestation significantly improved MWD compared to the field soil between 2013 and 2016 from 1.63 ± 0.04 mm to 1.85 ± 0.05 mm. Tree planting significantly neutralized the soil pHH2O, mixed planting appeared to improve LOI and TOC. Four-year afforestation led also to higher structural stability, less alkaline pH and deciduous tree-related increase in LOI, which may indicate better soil sustainability to drought.

Keywords: field experiment; tree planting; soil amendment; soil organic matter; soil organic carbon

Received: October 19, 2022; Accepted: November 24, 2022; Prepublished online: December 7, 2022; Published: December 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Holátko J, Holubík O, Hammerschmiedt T, Vopravil J, Kintl A, Brtnický M. Afforestation of agricultural land affects soil structural stability and related preconditions to resist drought. J. For. Sci. 2022;68(12):496-508. doi: 10.17221/156/2022-JFS.
Download citation

References

  1. Ali A., Biggs A.J.W., Marchuk A., Bennett J.M. (2019): Effect of irrigation water pH on saturated hydraulic conductivity and electrokinetic properties of acidic, neutral, and alkaline soils. Soil Science Society of America Journal, 83: 1672-1682. Go to original source...
  2. Bai Y., Zhou Y., He H. (2020): Effects of rehabilitation through afforestation on soil aggregate stability and aggregateassociated carbon after forest fires in subtropical China. Geoderma, 376: 114548. Go to original source...
  3. Bardgett R.D., Yeates G.W., Anderson J.M. (2005): Patterns and determinants of soil biological diversity. In: Bardgett R., Usher M., Hopkins D. (eds): Biological Diversity and Function in Soils. Cambridge, Cambridge University Press: 100-118. Go to original source...
  4. Bronick C.J., Lal R. (2005): Soil structure and management: A review. Geoderma, 124: 3-22. Go to original source...
  5. Buechel M., Slater L., Dadson S. (2022): Hydrological impact of widespread afforestation in great britain using a large ensemble of modelled scenarios. Communications Earth and Environment, 3: 6. Go to original source...
  6. Castro Filho C., Lourenço A., Guimarães M.D.F., Fonseca I.C.B. (2002): Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research, 65: 45-51. Go to original source...
  7. Chantigny M.H., Angers D.A., Prévost D., Vézina L.P., Chalifour F.P. (1997): Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Science Society of America Journal, 61: 262-267. Go to original source...
  8. Christensen B.T. (2001): Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52: 345-353. Go to original source...
  9. Cukor J., Vacek Z., Linda R., Remeš J., Bílek L., Sharma R.P., Baláš M., Kupka I. (2017): Effect of mineral eco-fertilizer on growth and mortality of young afforeststion. Austrian Journal of Forest Science, 134: 367-386.
  10. Cunningham S.C., Mac Nally R., Baker P.J., Cavagnaro T.R., Beringer J., Thomson J.R., Thompson R.M. (2015): Balancing the environmental benefits of reforestation in agricultural regions. Perspectives in Plant Ecology, Evolution and Systematics, 17: 301-317. Go to original source...
  11. DeSoto L., Cailleret M., Sterck F., Jansen S., Kramer K., Robert E.M.R., Aakala T., Amoroso M.M., Bigler C., Camarero J.J., Cufar K., Gea-Izquierdo G., Gillner S., Haavik L.J., Heres A.M., Kane J.M., Kharuk V.I., Kitzberger T., Klein T., Levanic T., Linares J.C., Makinen H., Oberhuber W., Papadopoulos A., Rohner B., SanguesaBarreda G., Stojanovic D.B., Suarez M.L., Villalba R., Martinez-Vilalta J. (2020): Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11: 545. Go to original source... Go to PubMed...
  12. Di Sacco A., Hardwick K.A., Blakesley D., Brancalion P.H.S., Breman E., Cecilio Rebola L., Chomba S., Dixon K., Elliott S., Ruyonga G., Shaw K., Smith P., Smith R.J., Antonelli A. (2021): Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 27: 1328-1348. Go to original source... Go to PubMed...
  13. Doelman J.C., Stehfest E., van Vuuren D.P., Tabeau A., Hof A.F., Braakhekke M.C., Gernaat D.E.H.J., van den Berg M., van Zeist W.J., Daioglou V., van Meijl H., Lucas P.L. (2020): Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26: 1576-1591. Go to original source... Go to PubMed...
  14. Edwards A.P., Bremner J.M. (1967): Microaggregates in soils. Journal of Soil Science, 18: 64-73. Go to original source...
  15. Fernández-Ondoño E., Rojo Serrano L., Jiménez M.N., Navarro F.B., Díez M., Martín F., Fernández J., Martínez F.J., Roca A., Aguilar J. (2010): Afforestation improves soil fertility in south-eastern Spain. European Journal of Forest Research, 129: 707-717. Go to original source...
  16. Ferreira V., Guérold F. (2017): Leaf litter decomposition as a bioassessment tool of acidification effects in streams: Evidence from a field study and meta-analysis. Ecological Indicators, 79: 382-390. Go to original source...
  17. Gömöryová E., Vass D., Pichler V., Gömöry D. (2009): Effect of alginite amendment on microbial activity and soil water content in forest soils. Biologia, 64: 585-588. Go to original source...
  18. Hackl E., Pfeffer M., Donat C., Bachmann G., ZechmeisterBoltenstern S. (2005): Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology and Biochemistry, 37: 661-671. Go to original source...
  19. Haque S.M.S., Billett M.F., Grayston S., Ord B.G. (2006): Effects of afforestation on ammonification and nitrification rates in former agricultural soils. Soil Use and Management, 15: 117-122. Go to original source...
  20. Haynes R.J., Naidu R. (1998): Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems, 51: 123-137. Go to original source...
  21. Hoek van Dijke A.J., Herold M., Mallick K., Benedict I., Machwitz M., Schlerf M., Pranindita A., Theeuwen J.J.E., Bastin J.F., Teuling A.J. (2022): Shifts in regional water availability due to global tree restoration. Nature Geoscience, 15: 363-368. Go to original source...
  22. Holubík O., Podrázský V., Vopravil J., Khel T., Remeš J. (2014): Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil and Water Research, 9: 192-200. Go to original source...
  23. Hong S., Piao S., Chen A., Liu Y., Liu L., Peng S., Sardans J., Sun Y., Penuelas J., Zeng H. (2018): Afforestation neutralizes soil pH. Nature Communications, 9: 520. Go to original source... Go to PubMed...
  24. Huang H., Tian D., Zhou L., Su H., Ma S., Feng Y., Tang Z., Zhu J., Ji C., Fang J. (2022): Effects of afforestation on soil microbial diversity and enzyme activity: A meta-analysis. Geoderma, 423: 115961. Go to original source...
  25. IUSS Working Group WRB. (2007): World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. Rome, FAO: 116.
  26. Kalhoro S., Xu X., Chen W., Hua R., Raza S., Ding K. (2017): Effects of different land-use systems on soil aggregates: A case study of the Loess Plateau (Northern China). Sustainability, 9: 1349. Go to original source...
  27. Kaptanoğlu Berber A.S., Farasat S., Namli A. (2014): Afforestation effects on soil biochemical properties. Eurasian Journal of Forest Science, 1: 25-34.
  28. Kara O., Babur E., Altun L., Seyis M. (2016): Effects of afforestation on microbial biomass C and respiration in eroded soils of Turkey. Journal of Sustainable Forestry, 35: 385-396. Go to original source...
  29. Kemper W.D., Rosenau R.C. (2018): Aggregate stability and size distribution. In: Klute A. (ed.): Methods of Soil Analysis. Madison, John Wiley and Sons, Ltd.: 425-442. Go to original source...
  30. Khalsa S.D.S., Almanza C.A., Brown P.H., Smart D.R. (2016): Leaf litter C and N cycling from a deciduous permanent crop. Soil Science and Plant Nutrition, 62: 271-276. Go to original source...
  31. Kupka I., Podrázský V. (2010): Vliv druhového složení porostů na zalesněné zemědělské půdě na pedofyzikální vlastnosti a poutání uhlíku v povrchových horizontech. In: Knott R., Peňáz J., Vaněk P. (eds.): Pěstování lesů v nižších vegetačních stupních, Křtiny, Sept 6-8, 2010: 71-76. (in Czech)
  32. Labaz B., Kabala C., Waroszewski J., Dudek M., Bogacz A., Gruszka D., Mlynek S. (2022): Medium-term transformation of Chernozems under broadleaf forests in the temperate climate of south-east Poland. Geoderma Regional, 30: e00535. Go to original source...
  33. Lan J., Wang S., Wang J., Qi X., Long Q., Huang M. (2022): The shift of soil bacterial community after afforestation influence soil organic carbon and aggregate stability in Karst region. Frontiers in Microbiology, 13: 901126. Go to original source... Go to PubMed...
  34. Lichtfouse E., Hamelin M., Navarrete M., Debaeke P. (2011): Sustainable Agriculture Volume 2. Dordrecht, Springer: 992. Go to original source...
  35. Liu R., Zhou X., Wang J., Shao J., Fu Y., Liang C., Yan E., Chen X., Wang X., Bai S.H. (2019): Differential magnitude of rhizosphere effects on soil aggregation at three stages of subtropical secondary forest successions. Plant and Soil, 436: 365-380. Go to original source...
  36. Manrubia M., van der Putten W.H., Weser C., ten Hooven F.C., Martens H., Brinkman E.P., Geisen S., Ramirez K.S., Veen G.F.C. (2019): Soil functional responses to drought under range-expanding and native plant communities. Functional Ecology, 33: 2402-2416. Go to original source... Go to PubMed...
  37. Mehlich A. (1984): Mehlich 3 soil test extractant. A modification of the Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  38. Meier R., Schwaab J., Seneviratne S.I., Sprenger M., Lewis E., Davin E.L. (2021): Empirical estimate of forestationinduced precipitation changes in Europe. Nature Geoscience, 14: 473-478. Go to original source...
  39. Mohanty M., Sinha N., Hati K.M., Painuli D.K., Chaudhary R.S. (2012): Stability of soil aggregates under different vegetation covers in a vertisol of central India. Journal of Agricultural Physics, 12: 133-142.
  40. Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds): Methods
  41. Original Paper of Soil Analysis. Part 3. Chemical Methods. Madison, Soil Science Society of America, Inc., American Society of Agronomy, Inc.: 961-1010.
  42. Nemati M.R., Caron J., Gallichand J. (2002): Predicting hydraulic conductivity changes from aggregate mean weight diameter. Water Resources Research, 38: 9-11. Go to original source...
  43. Nickels M.C.L., Prescott C.E. (2021): Soil carbon stabilization under coniferous, deciduous and grass vegetation in post-mining reclaimed ecosystems. Frontiers in Forests and Global Change, 4: 689594. Go to original source...
  44. Novák T. (2022): Afforestation affects vertical distribution of basic soil characteristics and taxonomic status of sodic soils. Plant, Soil and Environment, 68: 245-252. Go to original source...
  45. Pardos M., del Río M., Pretzsch H., Jactel H., Bielak K., Bravo F., Brazaitis G., Defossez E., Engel M., Godvod K., Jacobs K., Jansone L., Jansons A., Morin X., Nothdurft A., Oreti L., Ponette Q., Pach M., Riofrío J., Ruíz-Peinado R., Tomao A., Uhl E., Calama R. (2021): The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481: 118687. Go to original source...
  46. Pinheiro E.F.M., Pereira M.G., Anjos L.H.C. (2004): Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil and Tillage Research, 77: 79-84. Go to original source...
  47. Podrázský V., Procházka J., Remeš J. (2011): Produkce a vývoj půdního prostředí porostů na bývalých zemědělských půdách v oblasti Českomoravské vrchoviny. Zprávy lesnického výzkumu, 56: 27-35. (in Czech)
  48. Podrázský V., Holubík O., Baláš M., Kupka I., Zvolánek J., Tužinský M. and Gjurov V. (2014). Využití přípravků na bázi řas pro iniciální podporu výsadeb lesních dřevin (Use of algae-based materials for initial support of plantations of the forest tree species). In: Štefančík I. (ed.): Proceedings of Central European Silviculture. Zvolen, National Forest Centre Zvolen: 45-51. (in Czech)
  49. Podrázský V., Holubík O., Vopravil J., Khel T., Moser W.K., Prknová H. (2015): Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic. Journal of Forest Science, 61: 225-234. Go to original source...
  50. Schmid M.W., van Moorsel S.J., Hahl T., De Luca E., De Deyn G.B., Wagg C., Niklaus P.A., Schmid B. (2021): Effects of plant community history, soil legacy and plant diversity on soil microbial communities. Journal of Ecology, 10: 3007-3023. Go to original source...
  51. Schwärzel K., Zhang L., Montanarella L., Wang Y., Sun G. (2020): How afforestation affects the water cycle in drylands: A process-based comparative analysis. Global Change Biology, 26: 944-959. Go to original source... Go to PubMed...
  52. Six J., Elliott E.T., Paustian K. (2000): Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32: 2099-2103. Go to original source...
  53. Sparling G.P., Hart P.B.S., August J.A., Leslie D.M. (1994): A comparison of soil and microbial carbon, nitrogen, and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biology and Fertility of Soils, 17: 91-100. Go to original source...
  54. Szabó L.P. (2004): Characterization of alginite humic acid content. Desalination, 163: 85-91. Go to original source...
  55. Tardy V., Mathieu O., Leveque J., Terrat S., Chabbi A., Lemanceau P., Ranjard L., Maron P.A. (2014): Stability of soil microbial structure and activity depends on microbial diversity. Environmental Microbiology Reports, 6: 173-183. Go to original source... Go to PubMed...
  56. Tica D., Udovic M., Lestan D. (2011): Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85: 577-583. Go to original source... Go to PubMed...
  57. Tisdall J.M., Oades J.M. (1982): Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33: 141-163. Go to original source...
  58. Tisdall J.M., Smith S.E., Rengasamy P. (1997): Aggregation of soil by fungal hyphae. Soil Research, 35: 55-60. Go to original source...
  59. Trivedi P., Delgado-Baquerizo M., Jeffries T.C., Trivedi C., Anderson I.C., Lai K., McNee M., Flower K., Pal Singh B., Minkey D., Singh B.K. (2017): Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology, 19: 3070-3086. Go to original source... Go to PubMed...
  60. Ushio M., Wagai R., Balser T.C., Kitayama K. (2008): Variations in the soil microbial community composition of a tropical montane forest ecosystem: Does tree species matter? Soil Biology and Biochemistry, 40: 2699-2702. Go to original source...
  61. Wang X., Zhong Z., Li W., Liu W., Zhang X., Wu S., Ren Z., Wu Q., Shen Z., Ren C., Yang G., Han X. (2020): Effects of Robinia pseudoacacia afforestation on aggregate size distribution and organic C dynamics in the central Loess Plateau of China: A chronosequence approach. Journal of Environmental Management, 268: 110558. Go to original source... Go to PubMed...
  62. Wang J., Zhao W., Wang G., Yang S., Pereira P. (2021): Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China). Science of the Total Environment, 770: 144833. Go to original source... Go to PubMed...
  63. Wei X., Li X., Jia X., Shao M. (2013): Accumulation of soil organic carbon in aggregates after afforestation on abandoned farmland. Biology and Fertility of Soils, 49: 637-646. Go to original source...
  64. Werden L.K., Alvarado J P., Zarges S., Calderón M E., Schilling E.M., Gutiérrez L M., Powers J.S. (2017): Using soil amendments and plant functional traits to select native tropical dry forest species for the restoration of degraded Vertisols. Journal of Applied Ecology, 55: 1019-1028. Go to original source...
  65. Whitbread-Abrutat P.H. (1997): The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant and Soil, 192: 199-217. Go to original source...
  66. Wu J., Zhang Q., Yang F., Lei Y., Zhang Q., Cheng X. (2016): Afforestation impacts microbial biomass and its natural 13 C and 15N abundance in soil aggregates in central China. Science of the Total Environment, 568: 52-56. Go to original source... Go to PubMed...
  67. Yang Y., Hobbie S.E., Hernandez R.R., Fargione J., Grodsky S.M., Tilman D., Zhu Y.G., Luo Y., Smith T.M., Jungers J.M., Yang M., Chen W.Q. (2020): Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth, 3: 176-186. Go to original source...
  68. Yao Y., Wang X., Zeng Z., Liu Y., Peng S., Zhu Z., Piao S. (2016): The effect of afforestation on soil moisture content in northeastern China. PLoS One, 11: e0160776. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.