J. For. Sci., 2021, 67(11):522-532 | DOI: 10.17221/78/2021-JFS

Norway maple (Acer platanoides) and pedunculate oak (Quercus robur) demonstrate different patterns of genetic variation within and among populations on the eastern border of distribution rangesOriginal Paper

Artur Akhmetov*,1, Ruslan Ianbaev2, Svetlana Boronnikova3, Yulai Yanbaev4, Aygul Gabitova5, Aleksey Kulagin6
1 Department of Land Management, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University", Ufa, Russia
2 Laboratory of Genetic Resources, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University", Ufa, Russia
3 Department of Botany and Plant Genetics, Federal State Budgetary Educational Establishment of Higher Education "Perm State University", Perm, Russia
4 Department of Forestry and Landscape Design, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University", Ufa, Russia
5 Scientific-Educational Center, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University", Ufa, Russia
6 Laboratory of Forestry, Ufa Institute of Biology of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia

Norway maple (Acer platanoides L.) is a key species of broadleaved forests whose population genetics is poorly studied using modern genetic tools. We used ISSR analysis to explore genetic diversity and differentiation among 10 Russian populations on the eastern margin of the species range of distribution, and to compare the revealed patterns with the results of our population genetic studies of pedunculate oak (Quercus robur L.). In the first set comparatively high heterozygosity and allelic diversity were found (expected heterozygosity HE = 0.160 ± 0.033, number of alleles na = 1.440 ± 0.080, effective number of alleles ne = 1.271 ± 0.062) in comparison with strongly fragmented and geographically isolated small maple stands of the second set (HE = 0.083 ± 0.011, na = 1.281 ± 0.031, ne = 1.136 ± 0.019). A relatively high genetic differentiation among populations was detected (the proportion of the inter-population component of total genetic variation, GST = 0.558 ± 0.038). In the Cis-Urals, local groups of populations that are confined to the northern, middle and southern parts of the Urals were identified. On the contrary, the current significant fragmentation of the pedunculate oak distribution area in the same study area did not lead to any noticeable genetic differentiation among the majority of populations, the values of the population genetic diversity were very similar in different parts of the Southern Urals.

Keywords: Norway maple; pedunculate oak; genetic diversity; ISSR markers

Published: November 26, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Akhmetov A, Ianbaev R, Boronnikova S, Yanbaev Y, Gabitova A, Kulagin A. Norway maple (Acer platanoides) and pedunculate oak (Quercus robur) demonstrate different patterns of genetic variation within and among populations on the eastern border of distribution ranges. J. For. Sci. 2021;67(11):522-532. doi: 10.17221/78/2021-JFS.
Download citation

References

  1. Aguilar R., Quesada M., Ashworth L., Herrerias-Diego Y., Lobo J. (2008): Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Molecular Ecology, 17: 5177-5188. Go to original source... Go to PubMed...
  2. Bertolasi B., Leonarduzzi C., Piotti A., Leonardi S., Zago L., Gui L., Gorian F., Vanetti I., Binelli G. (2015): A last stand in the Po valley: Genetic structure and gene flow patterns in Ulmus minor and U. pumila. Annals of Botany, 115: 683-692. Go to original source... Go to PubMed...
  3. Blanc-Jolivet C., Bakhtina S., Yanbaev R., Yanbaev Y., Mader M., Guichoux E., Degen B. (2020): Development of new SNPs loci on Quercus robur and Quercus petraea for genetic studies covering the whole species' distribution range. Conservation Genetics Resources, 12: 597-600. Go to original source...
  4. Bukshtinov A.D. (1982): Klen. Moscow, Lesn. prom-st: 86.
  5. Bushbom J., Yanbaev Y., Degen B. (2011): Efficient longdistance gene flow into an isolated relict oak stand. Journal of Heredity, 102: 464-472. Go to original source... Go to PubMed...
  6. Caudullo G., de Rigo D. (2016): Acer platanoides in Europe: Distribution, habitat, usage and threats. In: San-MiguelAyanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds): European Atlas of Forest Tree Species. Luxembourg, Publication Office of the European Union: 54-55.
  7. Cortés A.J., Restrepo-Montoya M., Bedoya-Canas L.E. (2020): Modern strategies to assess and breed forest tree adaptation to changing climate. Frontiers in Plant Science, 11: 1606. Go to original source... Go to PubMed...
  8. Degen B., Yanbaev R., Yanbaev Y. (2019): Genetic differentiation of Quercus robur in the South-Ural. Silvae Genetica, 68: 111-115. Go to original source...
  9. Degen B., Blanc-Jolivet C., Bakhtina S., Ianbaev R., Yanbaev Y., Mader M., Nürnberg S., Schröder H. (2021a): Applying targeted genotyping by sequencing with a new set of nuclear and plastid SNP and indel loci for Quercus robur and Quercus petraea. Conservation Genetics Resources, 13: 345-347. Go to original source...
  10. Degen B., Yanbaev Y., Blanc-Jolivet C., Ianbaev R., Bakhtina S., Mader M. (2021b): Genetic comparison of planted and natural Quercus robur stands in Russia. Silvae Genetica, 70: 1-8. Go to original source...
  11. Degen B., Yanbaev Y., Ianbaev R., Bakhtina S., Tagirova A. (2021c): Genetic diversity and differentiation among populations of the pedunculate oak (Quercus robur) at the eastern margin of its range based on a new set of 95 SNP loci. Journal of Forestry Research, 32: 2237-2243. Go to original source...
  12. Earl D.A., von Holdt B.M. (2012): STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4: 359-361. Go to original source...
  13. Falush D., Stephens M., Pritchard J.K. (2003): Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164: 1567-1587. Go to original source... Go to PubMed...
  14. Gorchakovsky P.L. (1972): Shirokolistvennye lesa i ikh mesto v rastitelnom pokrove Yuzhnogo Urala. Moscow, Nauka: 146.
  15. Hewitt G. (2000): The genetic legacy of the Quaternary ice ages. Nature, 405: 907-913. Go to original source... Go to PubMed...
  16. Hytteborn H., Maslov A.A., Nazimova D.I., Rysin L.P. (2005): Boreal forests of Eurasia. In: Andersson F.A. (ed): Ecosystems of the World 6. Coniferous Forests. Amsterdam, Elsevier: 23-99.
  17. Kremer A., Hipp A.L. (2020): Oaks: An evolutionary success story. New Phytologist, 226: 987-1011. Go to original source... Go to PubMed...
  18. Nei M. (1972): Genetic distance between populations. The American Naturalist, 106: 283-292. Go to original source...
  19. Nei M., Li W.H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269-5273. Go to original source... Go to PubMed...
  20. Neustadt M.I. (1957): Istoriya lesov i paleogeografiya SSSR v golocene. Moscow, Izd-vo AN SSSR: 403.
  21. Panchuk I.I., Kasianchuk R.M., Volkov R.A. (2019): Subrepeats in 5 s rDNAs as a molecular marker in Acer platanoides L. populations. Factors in Experimental Evolution of Organisms, 25: 80-85. Go to original source...
  22. Peakall R., Smouse P.E. (2006): GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295. Go to original source...
  23. Petit R.J., Aguinagalde I., de Beaulieu J.L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Müller-Starck G., Demesure-Musch B., Palmé A., Martín J.P., Rendell S., Vendramin G.G. (2003): Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300: 1563-1565. Go to original source... Go to PubMed...
  24. Petit R.J., Bialozyt R., Brewer S., Cheddadi R., Comps B. (2001): From spatial patterns of genetic diversity to postglacial migration processes in forest trees. In: Silvertown J., Antonovics J. (eds): Integrating Ecology and Evolution in a Spatial Context. Oxford, Blackwell: 295-318.
  25. Petit R.J., Csaikl U.M., Bordács S., Burg K., Coart E., Cottrell J., van Dam B., Deans J.D., Dumolin-Lapègue S., Fineschi S., Finkeldey R., Gillies A., Glaz I., Goicoechea P.G., Jensen J.S., König A.O., Lowe A.J., Madsen S.F., Mátyás G., Munro R.C., Olalde M., Pemonge M.H., Popescu F., Slade D., Tabbener H., Taurchini D., de Vries S.G.M., Ziegenhagen B., Kremer A. (2002): Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156: 5-26. Go to original source...
  26. Popov G.V. (1980): Lesa Bashkirii. Ufa, Bashk. kn. izd-vo: 144.
  27. Porth I., El-Kassaby Y. (2014): Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity, 6: 283-295. Go to original source...
  28. Rogers S.O., Bendich A.J. (1985): Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 5: 69-76. Go to original source... Go to PubMed...
  29. Rusanen M., Vakkari P., Blom A. (2003): Genetic structure of Acer platanoides and Betula pendula in northern Europe. Canadian Journal of Forest Research, 33: 1110-1115. Go to original source...
  30. Semerikova S.A., Isakov I.Y., Semerikov V.L. (2021): Chloroplast DNA variation and phylogeography of pedunculate oak Quercus robur L. in the Eastern part of the range. Russian Journal of Genetics, 57: 47-60. Go to original source...
  31. Smirnova O.V., Kalyakin V.N., Turubanova S.A., Bobrovsky M.V., Khanina L.G. (2017): Development of the European Russian forests in the Holocene. In: Smirnova O.V., Bobrovsky M.V., Khanina L.G. (eds): European Russian Forests. Their Current State and Features of Their History. Dordrecht, Springer: 515-536. Go to original source...
  32. Smulders M.J.M., Cobben M.M.P., Arens P., Verboom J. (2009): Landscape genetics of fragmented forests: Anticipating climate change by facilitating migration. iForest - Biogeosciences and Forestry, 2: 128-132. Go to original source...
  33. Sun S., Zhang Y., Huang D., Wang H., Cao Q., Fan P., Yang N., Zheng P., Wang R. (2020): The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Science of the Total Environment, 744: 140786. Go to original source... Go to PubMed...
  34. Van de Peer Y., De Wachter R. (1994): TREECON for Windows: A software package for the construction and drawing evolutionary trees for the Microsoft Windows environment. Computer Application in the Biosciences, 10: 569-570. Go to original source... Go to PubMed...
  35. Velichko A.A., Andreev A.A., Klimanov V.A. (1997): Climate and vegetation dynamics in the tundra and forest zone during the Late Glacial and Holocene. Quaternary International, 41: 71-96. Go to original source...
  36. Wright S. (1984): Evolution and the Genetics of Populations. Vol. 2: Theory of Gene Frequencies. Chicago, University of Chicago Press: 511.
  37. Yeh F.C., Yang R.C., Mao J., Ye Z., Boyle T.J. (1996): POPGENE, the Microsoft Windows-based User-friendly Software for Population Genetic Analysis of Co-dominant and Dominant Markers and Quantitative Traits. Edmonton, Alta, Department of Renewable Resources, Univ. of Alberta: 238.
  38. Zietkiewicz E., Rafalski A., Labuda D. (1994): Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176-183. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.